Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 01 |
Tytuł artykułu

Effects of exogenous NO on the growth, mineral nutrient content, antioxidant system, and ATPase activities of Trifoliumrepens L. plants under cadmium stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
This work investigated the effects of SNP (sodium nitroprusside; an NO donor) on 100 lM cadmium (Cd) toxicity in 2-week-old Trifolium repens L. plants. Cd accumulated to a greater degree in roots than in shoots and resulted in oxidative stress, as evidenced by increased concentrations of hydrogen peroxide and malondialdehyde. In addition, Cd exposure markedly hindered root and shoot elongation and biomass production, reduced the activities of H⁺-ATPase in the plasma membranes (Pms) and tonoplasts (V), and inhibited the absorption of mineral nutrition. However, the addition of various SNP doses alleviated the inhibitory effects on plant growth caused by Cd, elevated the activity of the PM H⁺-ATPase in both shoots and roots, enhanced the activity of V-H⁺-ATPase in roots, and partially enhanced the uptake of minerals (shoots: Mg and Cu; roots: Ca, Mg, and Fe) in Cd-treated plants. Shoot and root Cd accumulation significantly diminished when plants were subjected to Cd plus SNP treatments, though the level of root Cd accumulation was not dependent on the SNP dosage level. Moreover, the addition of SNP considerably upregulated ascorbate peroxidases (APX), catalases and superoxide dismutase (SOD) activity in shoots under Cd stress, but downregulated APX and SOD activity in roots. The addition of SNP did not influence glutathione reductase (GR) activity in roots, but markedly increased its activity in shoots. Similar to root GR levels, shoot ascorbate content experienced no significant change between Cd plus SNP treatment and Cd treatment alone; however, root ascorbate and glutathione levels decreased in plant tissues in the treatments with Cd and SNP. The results obtained in this work indicate that SNP applied exogenously, particularly at lower doses, can effectively deplete the detrimental effects on white clover growth, likely by reducing oxidative damage, modulating mineral absorption, and re-establishing the levels of ATPases.
Słowa kluczowe
Opis fizyczny
Article: 1721 [16 p.], fig.,ref.
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
  • College of Agriculture and Life Sciences, Chungnam National University, Deajeon 302-828, South Korea
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3
  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Method Enzymol 113:548–554. doi:10.1016/S0076-6879(85)13073-9
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–286. doi:10.1016/0003-2697(71)90370-8
  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39. doi:10.1146/annurev.arplant.59.032607.092830
  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315. doi:10.1104/pp.108.133348
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Briskin DP, Leonard RT, Hodges TK (1987) Isolation of the plasma membrane: markers and general principles. Method Enzymol 148:542–558. doi:10.1016/0076-6879(87)48053-1
  • Buckhout TJ, Bell PF, Luster DG, Chaney RL (1989) Iron-stress induced redox activity in tomato (Lycopersicum esculentum Mill.) is localized on the plasma membrane. Plant Physiol 90:151–156. doi:10.1104/pp.90.1.151
  • Burzyn´ski M, Kolano E (2003) In vivo and in vitro effects of copper and cadmium on the plasma membrane H⁺-ATPase from cucumber (Cucumis sativus L.) and maize (Zea mays L.) roots. Acta Physiol Plant 25:39–45. doi:10.1007/s11738-003-0034-z
  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227. doi:10.1104/pp.98.4.1222
  • Clemens S, Antosiewicz DM, Ward JM, Schachtmani DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–12048. doi:10.1073/pnas.95.20.12043
  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loophelix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412. doi:10.1105/tpc.104.024315
  • Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signalling in plants: interplays with Ca2⁺ and protein kinases. J Exp Bot 59:155–163. doi:10.1093/jxb/erm197
  • Cui Y, Zhang X, Zhu Y (2008) Does copper reduce cadmium uptake by different rice genotypes? J Environ Sci 20:332–338. doi:10.1016/S1001-0742(08)60052-2
  • De Lespinay A, Lequeux H, Lambillotte B, Lutts S (2010) Protein synthesis is differentially required for germination in Poa pratensis and Trifolium repens in the absence or in the presence of cadmium. J Plant Growth Regul 61:205–214. doi:10.1007/s10725-010-9471-z
  • Gomes-Junior RA, Moldes CA, Delite FS, Grata˜o PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Nickel elicits a fast antioxidant responses in Coffea arabica cells. Plant Physiol Biochem 44:420–429. doi:10.1016/j.plaphy.2006.06.002
  • He H, He L, Gu M (2014) The diversity of nitric oxide function in plant responses to metal stress. Biometals 27:219–228. doi:10.1007/s10534-014-9711-1
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy 125:189–198. doi:10.1016/0003-9861(68)90654-1
  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42:227–238. doi:10.1023/B: GROW.0000026514.98385.5c
  • Janicka-Russak M, Kabała K, Burzyn´ski M, Kłobus G (2008) Response of plasma membrane H⁺-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728. doi:10.1093/jxb/ern219
  • Janicka-Russak M, Kabała K, Burzyn´ski M (2012) Different effect of cadmium and copper on H⁺-ATPase activity in plasma membrane vesicles from Cucumis sativus. J Exp Bot 63:4133–4142. doi:10.1093/jxb/ers097
  • Kabała K, Janicka-Russak M, Burzyn´ski M, Kłobus G (2008) Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells. J Plant Physiol 165:278–288. doi:10.1016/j.jplph.2007.03.007
  • Kabała K, Janicka-Russak M, Kłobus G (2010) Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. J Plant Physiol 167:1328–1335. doi:10.1016/j.jplph.2010.03.020
  • Kasprowicz A, Szuba A, Volkmann D, Balusˇka F, Wojtaszek P (2009) Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices. J Exp Bot 60:1605–1617. doi:10.1093/jxb/erp033
  • Kovacik J (2013) Hyperaccumulation of cadmium in Matricaria chamomilla: a never-ending story? Acta Physiol Plant 35:1721–1725. doi:10.1007/s11738-012-1184-7
  • Kováčik J, Tomko J, Bačkor M, Repčák M (2006) Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regul 50:239–247. doi:10.1007/s10725-006-9141-3
  • Kováčik J, Klejdus B, Hedbavny J, Štork F, Bačkor M (2009) Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamomilla plants. Plant Soil 320:231–242. doi:10.1007/s11104-009-9889-0
  • Kováčik J, Grúz J, Klejdus B, Štork F, Marchiosi R, Ferrarese-Filho O (2010) Lignification and related parameters in copper-exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci 179:383–389. doi:10.1016/j.plantsci.2010.06.014
  • Kováčik J, Babula P, Hedbavnya J, Švec P (2014a) Manganeseinduced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide. Plant Sci 215–216:1–10. doi:10.1016/j.plantsci.2013.10.015
  • Kováčik J, Babula P, Klejdus B, Hedbavny J, Jarošová M (2014b) Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS One 9:e91685. doi:10.1371/journal.pone.0091685
  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330. doi:10.1016/j.plantsci.2005.02.007
  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplast. The effect of hydrogen peroxide and paraquat. Biochem J 210:899–903
  • Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals 25:617–631. doi:10.1007/s10534-012-9551-9
  • Lin T, Morales MF (1977) Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: the actomyosin ATPase system. Anal Biochem 77:10–17. doi:10.1016/0003-2697(77)90284-6
  • Lowry OH, Rosebrough NT, Farr AL, Randall RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275
  • Manier N, Brulle F, Le Curieux F, Vandenbulcke F, Deram A (2012) Biomarker measurements in Trifolium repens and Eisenia fetida to assess the toxicity of soil contaminated with land fill leachate: a microcosm study. Ecotoxicol Environ Saf 80:339–348. doi:10. 1016/j.ecoenv.2012.04.002
  • Mishra S, Srivastava S, Tripathia RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37. doi:10.1016/j.plaphy.2006.01.007
  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
  • Ohinishi T, Gall RS, Mayer ML (1975) An improved assay of inorganic phosphate in the presence of extra labile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. Anal Biochem 69:261–267. doi:10.1016/0003-2697(75)90585-0
  • Patterson BD, Mackac EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139:487–492. doi:10.1016/0003-2697(84)90039-3
  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243. doi:10.1104/pp.108.131524
  • Romero-Puertas MC, Corpas FJ, Rodríguez-Serrano M, Gómez M, del Ríoa LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357. doi:10.1016/j.jplph.2006.06.018
  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63:158–167. doi:10.1016/j.envexpbot.2007.12.005
  • Štork F, Bačkor M, Klejdus B, Hedbavny J, Kováčik J (2013) Changes of metal-induced toxicity by H2O2/NO modulators in Scenedesmus quadricauda (Chlorophyceae). Environ Sci Pollut Res 20:5502–5511. doi:10.1007/s11356-013-1541-0
  • Verma K, Mehta SK, Shekhawat GS (2013) Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26:255–269. doi:10.1007/s10534-013-9608-4
  • Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28:1341–1349. doi:10.1007/s00299-009-0734-y
  • Wojtaszek P (2000) Nitric oxide in plants: to NO or not to NO. Phytochemistry 54:1–4. doi:10.1016/S0031-9422(00)00056-X
  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765. doi:10.1007/s00425-009-0984-5
  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20. doi:10.1016/
  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330. doi:10.1007/s11104-009-0011-4
  • Xu L, Dong Y, Kong J, Liu S (2014) Effects of root and foliar applications of exogenous NO on alleviating cadmium toxicity in lettuce seedlings. Plant Growth Regul 72:39–50. doi:10.1007/s10725-013-9834-3
  • Zhang X, Gao B, Xia H (2014) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol Environ Saf 106:102–108. doi:10.1016/j.ecoenv.2014.04.025
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.