PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 1/IV |

Tytuł artykułu

Modelling values of river macrophyte metrics using artificial neural networks

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The results of field research at 230 river sections located throughout Poland were used to examine the possibility of predicting values of macrophyte metrics of ecological status. Artificial intelligence methods such as artificial neural networks were used in the modelling. The physicochemical parameters of water (alkalinity, conductivity, nitrate and ammonium nitrogen, reactive and total phosphorus, and biochemical oxygen demand) were used as the explanatory (modelling) variables. The explained (modelled) parameters were the Polish MIR (Macrophyte Index for Rivers), the British MTR (Mean Trophic Rank) and the French IBMR (River Macrophytes Biological Index). The quality of the constructed models was assessed using the normalized root mean square error (NRMSE) and the r–Pearson’s linear correlation coefficient between variables modelled by the networks and calculated on the basis of the botanical research. These analyses demonstrated that the network modelling MIR values had the highest accuracy. The lowest prediction accuracy was obtained for MTR and IBMR indices. The differences between particular models are likely to result from better adjustment of the Polish method to local rivers (particularly in terms of indicator species used).

Wydawca

-

Rocznik

Numer

Opis fizyczny

p.61-70,fig.,ref.

Twórcy

autor
  • Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piatkowska 94c, 60-649 Poznan, Poland
autor
  • Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
autor
  • Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
  • Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piatkowska 94c, 60-649 Poznan, Poland

Bibliografia

  • Boniecki J. Elementy modelowania neuronowego w rolnictwie. Wydawnictwo UP w Poznaniu 2008, pp 124.
  • Ciecierska H. Makrofity jako wskaźniki stanu ekologicznego jezior. Rozprawy i Monografie, Uniwersytet Warmińsko-Mazurski w Olsztynie. Wydaw. UWM, 2008, nr 139, pp. 202.
  • Dawson F.H., Newman J.R., Gravelle M.J., Rouen K.J., Henville P. Assesment of the Trophic Status of Rivers Using Macrophytes. Evaluation of the Mean Trophic Rank. R&D TechnicalReport E39. Environment Agency, Bristol 1999, pp 101.
  • Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
  • Dogan E., Sengorur B., Koklu R. Modeling biochemical oxygen demand of the Melen River in Turkey using an artificial neural network technique. J. Environ. Manag., vol. 90, 2009, p.1229-1235.
  • Gebler D., Szoszkiewicz K. Ecological status assessment of rivers using macrophytes on selected examples (in polish). Scientific Review Engineering and Environmental Sciences, vol.20 (2) No 52 2011, p. 75–83.
  • Haury J., Peltre M.C., Tremolieres M., Barbe J., Thiebaut G., Bernez I., Daniel H., Chatenet P., Haan-Archipof G., Muller S., Dutartre A., Laplace-Treyture C., Cazaubon A., Lambert-Servien E. A new method to assess water trophy and organic pollutionthe MacrophyteBiological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia, vol. 570, 2006, p. 153-158.
  • Hering D., Johnson R.K., Kramm S., Schmutz S., Szoszkiewicz K. &Vardenschot P.F.M. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: acomparative metric-based analysis of organism response to stress. Freshwater Biology,vol. 51, 2006 p. 1757-1785.
  • Holmes N.T.H., Newman J.R., Chadd S., Rouen K.J., Saint L., Dawson F.H. Mean Trophic Rank. A user’s manual. R&D Technical Report E38. Environment Agency, Bristol 1999, pp. 156.
  • Lek S., Giraudel J.L., Guegan J.F., Neural Networks:Algorithms and Architectures for Ecologists and Evolutionary Ecologists, [w:] Neural Networks. Aplication to Ecology and Evolution,Ed. S. Lek, J.F. Guegan, Artificial Springer-Verlag Berlin, Heidelberg 2000, p. 3-27.
  • Soyupak S., Karaer F., Gurbuz H. A neural network based approach for calculating dissolved oxygen profiles in reservoirs. Neural Comput. Appl. vol. 12, 2003, p. 166-172.
  • StatSoft, Inc. (2010). STATISTICA (data analysis software system), version 9.1.
  • Szoszkiewicz K., Zbierska J., Jusik S., Zgoła T. Makrofitowa Metoda Oceny Rzek. Podręcznik metodyczny do oceny i klasyfikacji stanu ekologicznego wód płynących w oparciu o roślinywodne. Bogucki Wydawnictwo Naukowe, Poznań, 2010, pp. 81.
  • Tadeusiewicz R. 1993. Sieci neuronowe. Warszawa: Akademicka Oficyna Wydawnicza Zimny K. Ekologiczna ocena stanu środowiska. Bioindykacja i biomonitoring. Agencja Reklamowo-Wydawnicza A. Grzegorczyk. Warszawa, 2006, pp. 264.
  • Żelazo J. River and Valley restoration (in Polish). Infrastructure and ecology of rural areas. Polska Akademia Nauk, Oddział w Krakowie, Komisja Technicznej Infrastruktury Wsi, Nr 4/1, 2006, p. 11-31

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fdef95d9-dfac-4080-82c4-f4b93540cdd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.