PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 18 |
Tytuł artykułu

Influence of environmental factors on reproduction of polar vascular plants

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last few decades, changes of reproductive pattern of polar vascular plants have been observed, for the benefit of generative propagation. The reasons for this phenomenon are attributed to intensively following climate change, whose effects may be various. Warming causes the production of the greater number of generative structures, with higher quality. Our macroscopic observations conducted on specimens of polar vascular plants, cultivated in University of Warmia and Mazury greenhouse, indicate that the effect of temperature increase on flower development and seed formation is inconsistent. On the other hand enhanced levels of UV-B radiation can negatively affect seedlings. The complexity of the climate change causes tremendous difficulties in defining a clear and unquestioned way of modifications during the reproductive phase of the described plants.
Wydawca
-
Rocznik
Numer
18
Opis fizyczny
p.63-69,fig.,ref.
Twórcy
  • Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
Bibliografia
  • Ballaré C. L., Barnes P. W., Flint S. D., 1995, Inhibition of hypocotyls elongation by ultraviolet-B radiation in de-etiolating tomato seedlings, Physiologia Plantarum, 93(4), 584–592.
  • Barnes P. W., Flint S. D., Caldwell M. M., 1990, Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation, Am. J. Bot., 77, 1354–1360.
  • Bokhorst S., Huiskes Ad., Convey P., Rien A., 2007,The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic, BMC Ecology, 7, 15.
  • Callaghan T. V., Emanuelsson U., 1985, Population structure and processes of tundra plants.and vegetation, [in:] White J. (ed.), Population structure of vegetation, Dr W. Junk Publishers, Dordecht, 399–439.
  • Convey P., 1996, Reproduction of Antarctic flowering plants, Antarctic Science, 8(2), 127–134.
  • Day T. A., Demchick S. M., 1996, Influence of enhanced UV-B radiation on biomass allocation and pigment concentrations in leaves and reproductive structures of greenhouse-grown Brasica rapa, Vegetatio, 127, 109–116.
  • Day T. A., Howells B. W., Ruhland C. T., 1996, Changes in growth and pigment concentrations with leaf age in pea under modulated UV-B firld treatments, Plant Cell Environ., 19, 101–108.
  • Day T. A., Ruhland C. T., Grobe C. W., Xiong F., 1999, Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field, Oecologia, 119, 24–35.
  • Deckmyn G., Impens I., 1999, Seasonal response of six Poaceae to differential levels of solar UV-B radiation, Environmental and Experimental Botany, 41, 177–184.
  • Edwards J. A., 1974, Studies In Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv.: VI. Reproductive performance on Signy Island, British Antarctic Survey Bulletin, 39, 67– 86.
  • Greenberg B. M., Gaba V., Canaani O., Malkin S., Mattoo A. K., Edelman M., 1989,
  • Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions, Proc. Natl. Acad. Sci., USA, 86, 6617–6620.
  • King J. C., 1994, Recent climate variability in the vicinity of the Antarctic Peninsula, International Journal of Climatology, 14, 357–369.
  • Krizek D. T., Mirecki R. M., Britz S. J., 1997, Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucamber, Physiology Plantarum, 100, 886–893.
  • Pirożnikow E., 1996, Adaptive strategies of plants in the arctic desserts conditions, Dissertations Universitotis Warsoviensis, 441, Białystok.
  • Ruhland T. C., Day A. T., 2001, Size and longevity of seed banks in Antarctica and the influence of ultraviolet-B radiation on survivorship, growth and pigment concentrations of C. quitensis seedlings, Environmental and Experimental Botany, 45, 143–154.
  • Smith L. I. R., 1994, Vascular plants as bioindicators of regional warming in Antarctica, Oecologia, 99, 322–328.
  • Smith R. C., Stammerjohn S. E., Baker K. S., 1996, Surface air temperature variations in the western Antarctic Peninsula region, [in:] Ross R. M., Hofman E. E., Quetin L. B. (eds), Foundations for ecological research west of the Antarctic Peninsula (Antactic Research Series vol 70), American Geophysical Union, Washington, 105–121.
  • Wookey P. A., Parsons A. N., Welker J. M., Potter J. A., Callaghan T. V., Lee J. A., Press M. C., 1993, Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants, Oikos, 67, 490–502.
  • Wookey P. A., Robinson C. H., Parsons A. N., Welker J. M., Press M. C., Callaghan T. V., Lee J. A., 1995, Environmental constraints on the growth, photosynthesis and reproductive development of Dryas octopetala at a high Arctic polar semi-desert, Svalbard, Oecologia, 102, 478–489.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-fdbd53eb-5112-47cc-8614-ed2069d1cb24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.