PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 5 |

Tytuł artykułu

Biosorption of Sb(III) to exopolymers from Cyanobacterium Synechocystis sp.: a fluorescence and FTIR study

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Antimony (Sb) pollution in Sb mining areas has been of growing environmental concern. However, limited information is available on environmental behavior and biogeochemical process of Sb. In the present study, complexation of Sb(III) with extracellular polymeric substances (EPS) from cyanobacterium Synechocystis sp. was investigated using excitation-emission matrix (EEM) fluorescence spectroscopy. Two protein-like fluorescence peaks were identified in the EEM spectra of EPS. Fluorescence of both peaks was clearly quenched by Sb(IlI). The quenching constants (logKₐ) and the binding constants (logKb) for peaks A and B were in the range of 3.21-4.13 and 3.22-4.14, respectively. The interaction between EPS and Sb(III) is spontaneous and endothermic. The binding of Sb(III) to EPS is dominated by the hydrogen bonding and Van der waals forces. FTIR analysis showed that polysaccharides in EPS also participated in complexation EPS with Sb(III).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

5

Opis fizyczny

p.1497-1503,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang , 550002, Guizhou, China
autor
autor

Bibliografia

  • 1. UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Water Related Fate of the 129 Priority Pollutants, vol. 1. USEPA, Washington, DC, USA, EP-440/4-79-029A. pp. 23-29,1979.
  • 2. DE BOECK M., KIRSCH-VOLDERS M., LISON D. Cobalt and antimony: genotoxicity and carcinogenicity. Mutat. Res-Fund Mol. M. 533, 135, 2003.
  • 3. HUANG H., SHU S.C., SHIH J.H., KUO C.J., CHRJ I.D. Antimony trichloride induces DNA damage and apoptosis in mammalian cells. Toxicol., 129, 113, 1998.
  • 4. ZHANG D.Y., PAN X.L., MU G.J., WANG J.L. Toxic effects of antimony on photosystem II of Synechocystis sp. as probed by in vivo chlorophyll fluorescence. J. Appl. Phycol. 22, 479, 2010.
  • 5. PAN X.L., ZHANG D.Y., CHEN X., BAO A.M., LI L.H. Antimony Accumulation, Growth Performance, Antioxidant Defense System and Photosynthesis of Zea mays in Response to Antimony Pollution in Soil" Water Air Soil Pollut. 215,517, 2011.
  • 6. PAN X.L., ZHANG D.Y., CHEN X., LI L.H., MU G.J., LI L., SONG W.J. Sb uptake and photosynthesis of Zea mays growing in soil watered with Sb mine drainage: an OJIP chlorophyll fluorescence study. Pol. J. Environ. Stud. 19, (5), 981, 2010.
  • 7. ZHU J., WU F.C., DENG Q.J., SHAO S.X., MO C.L., PAN X.L., LI W., ZHANG R.Y. Environmental characteristics of water near the Xikuangshan antimony mine, Hunan province. Acta scientiae Circumstantiae, 29, 655, 2009.
  • 8. HE M.C., JI H.B., ZHAO C.Y., XIE J., WU X.M., LI Z.F. Preliminary studies of heavy metal pollution in soil and plant near antimony mine area. J. Beijing Normal Univ. (Natural Science). 38, 417-420, 2002.
  • 9. VOLESKY B. Biosorption and me. Water Res. 41, (18), 4017, 2007.
  • 10. LODEIRO P., REY-CASTRO C., BARRIADA J.L., DE VICENTE M.E.S. HERRERO R. Biosorption of cadmium by the protonated macroalga Sargassum muticum: Binding analysis with a nonideal, competitive, and thermodynamically consistent adsorption (NICCA) model. J. Colloid Interface Sci., 289, 352, 2005.
  • 11. NAJA G., MUSTIN C, BERTHELIN J., VOLESKY B. Lead biosorption study with Rhizopus arrhizus using a metal-based titration technique. J. Colloid Interface Sci. 292, 537, 2005.
  • 12. WANG J.L. Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 37, 847, 2002.
  • 13. HO Y.S, MCKAY G. Sorption of dyes and copper ions onto biosorbents, Process Biochem. 38, 1047, 2003.
  • 14. GUPTA V.K., RASTOGI A., NAYAK A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science. 342, 135, 2010.
  • 15. PALA., PAUL A.K. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J. Microbiol. 48, 49, 2008.
  • 16. LIU Q.S., TAY J.H., LIU Y. Substrate concentration-independent aerobic granulation in sequential aerobic sludge blanket reactor. Environ. Technol. 24, 1235, 2003.
  • 17. PAN X.L., LIU J., ZHANG D.Y., CHEN X., SONG W.J., WU F.C. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: A fluorescence quenching study. J. Colloid Interface Sci. 345, 442, 2010.
  • 18. ZHANG D.Y., WANG J.L., PAN X.L. Cadmium sorption by EPS produced by anaerobic sludge under sulphate-reducing conditions. J. Haz. Mat. 138, 589, 2006.
  • 19. LIU Y., LAM M.C., FANG H.H. Adsorption of heavy metals by EPS of activated sludge. Water Sci. Technol. 43, 59, 2001.
  • 20. TOURNEY J., NGWENYA B.T., MOSSELMANS J.W.F., MAGENNIS M. Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J. Colloid Interface Sci., 337, 381, 2009.
  • 21. SU X.F., WANG S.G., ZHANG X.M., CHEN P.J., LI X.M., GAO B.Y., MA Y. Spectroscopic study of Zn²⁺ and Co²⁺ binding to extracellular polymeric substances (EPS) from aerobic granules. J. Colloid Interface Sci. 335, 11, 2009.
  • 22. ZHANG D.Y., PAN X.L., MU G.J. Biosorption of antimony (Sb) by the cyanobacterium Synechocystis sp. Pol. J. Environ. Stud. 20, (5), 1353, 2011.
  • 23. STANIER R.Y., KUNISAWA R., MANDEL M., COHENBAZIRE G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171, 1971.
  • 24. LIU H., FANG H.P. Extractions of extracellular polymeric substances (EPSs) of sludges, J. Biotechnol. 95, 249, 2002.
  • 25. COMTE S., GUIBAUD G., BAUDU M. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochem. 41, 815, 2006.
  • 26. DUBOIS M., GILLES K.A., HAMILTON J.K., REBERS P.A., SMITH F. Calorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350,1956.
  • 27. BRADFORD M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 28. SHENG G.P., YU H.Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Res. 40, 1233, 2006.
  • 29. CHEN W., WESTERHOFF P., LEENHEER J.A., BOOKSH K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 37, 701, 2003.
  • 30. ZHANG D.Y., PAN X.L., MOSTAFA K.M.G., CHEN X., WU F.C., MU G. J., LIU J., SONG W. J., LIU Y.L., FU Q.L. Complexation between Hg(II) and biofilm extracellular polymeric substances: An application of fluorescence spectroscopy. J. Hazard. Mater. 175, 359, 2010.
  • 31. ADAV S.S., LEE D.J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J. Hazard. Mater. 154, 1120, 2008.
  • 32. PATEL-SORRENTINO N., MOUNIER S., BEN AIM J.Y. Excitation- emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res. 2371, 2002.
  • 33. LAKOWICZ J.R., Principles of Fluorescence Spectroscopy, third ed., Springer, Newyork, 2006.
  • 34. ESTEVES DA SILVA J.C.G., MACHADO A.A.S.C., OLIVEIRA C.J.S. Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO₂²⁺. Talanta 45, 1155,1998.
  • 35. LU X.Q., JAFFE R. Interaction between Hg(II) and natural dissolved-organic matter: a fluorescence spectroscopy based study. Water Res. 35, 1793, 2001.
  • 36. COMTE S., GUIBAUD G., BAUDU M. Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J. Hazard. Mater. 151, 185,2008.
  • 37. GUIBAUD G., TIXIER N., BOUJU A., BAUDU M. Use of a polarographic method to determine copper, nickel and zinc constants of complexation by extracellular polymers extracted from activated sludge. Process Biochem. 39, 833, 2004.
  • 38. HILL T.L. Cooperativity: Theory in Biochemistry, Springer-Verlag, New York, NY. 1985.
  • 39. ZHANG Y.Z., ZHOU B., LIU Y.X., ZHOU C.X., DING X.L., LIU Y. Fluorescence Study on the Interaction of Bovine Serum Albumin with P-Aminoazobenzene. J. Fluoresc. 18, 109, 2008.
  • 40. ROSS P.D., SUBRAMANIAN S. Thermodynamics of protein association reaction: forces contribution to stability, Biochem. 20, 3096,1981.
  • 41. WANG Z.W., WU Z. C., TANG S. J. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 43, 2504, 2009.
  • 42. CROUE J.P., BENEDETTI M.F., VIOLLEAU D., LEENHEER J.A. Characterization and Copper Binding of Humic and Nonhumic Organic Matter Isolated from the South Platte River: Evidence for the Presence of Nitrogenous Binding Site. Environ. Sci. Technol. 37, 328, 2003.
  • 43. GUIBAUD G., COMTE S., BORDAS F., DUPUY S, BAUDU M. Comparison of the complexation potential of extracellular polymeric substances (EPS) extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59, 629, 2005.
  • 44. LARTIGES B.S., DENEUX-MUSTIN S., VILLEMIN G., MUSTIN G., BARRES O., CHAMEROIS M., GERARD B., BABUT M. Composition, structure and size distribution of suspended particulates from the Rhine river. Water Res. 35, 808, 2001.
  • 45. MECOZZI M., ACQUISTUCCI R., DI NOTO V., PIETRANTONIO E., AMICI M., CARDIRILLI D. Characterization of mucilage aggregates in Adriatic and Tyrrhenian Sea: structure similarities between mucilage samples and the insoluble fractions of marine humic substance. Chemosphere 44, 709, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fdb05c6f-c3e4-4be8-8c8d-2c52d747aa8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.