Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 09 | 1 |
Tytuł artykułu

Describing roosts used by forest bats: the importance of microclimate

Warianty tytułu
Języki publikacji
Adequate descriptions of roosting habitat are vital to the management and conservation of bats. However, most studies on bat roosting preference report only structural characteristics of roosts and surrounding habitat, and ignore potentially important factors in roost selection. I argue that the current methods for describing the roosting habitat of tree-roosting bats can be improved, and that more emphasis should be placed on designing studies to determine why bats choose particular roosts. Herein, I focus on measuring microclimate in roosts because it universally influences habitat selection. Specifically, roost temperature is easily measured and is likely an important microclimate variable used by bats in roost selection. Variation in structural characteristics of roosts is often assumed to correlate with variation in microclimate of the roost; however, empirical data are too scarce to verify this assumption. I suggest improvements to the current methods of describing roost characteristics and suggest the inclusion of new methods to describe microclimate. In summation, I argue that there are methods of measuring roost characteristics that may be beneficial to use in conjunction with the methods currently being used, and that microclimate should be considered when designing future studies.
Opis fizyczny
  • Center for North American Bat Research and Conservation, Department of Ecology and Organismal Biology, Indiana State University, Terre Haute, 47809 USA
  • 1. G. S. Bakken 1992. Measurement and application of operative and standard operative temperatures in ecology. American Zoologist 32:194–216. Google Scholar
  • 2. G. S. Bakken and T. H. Kunz . 1988. Microclimate methods. Pp 303–332. in Ecological and behavioral methods for the study of bats T. H. Kunz , editor. ed. Smithsonian Institution. Washington, D.C. 533. pp. Google Scholar
  • 3. G. S. Bakken, W. A. Buttemer, W. R. Dawson, and D. M. Gates . 1981. Heated taxidermic mounts: a means of measuring the standard operative temperature affecting small animals. Ecology 62:311–318. Google Scholar
  • 4. G. S. Bakken, W. R. Santee, and D. J. Erskine . 1985. Operative and standard operative temperature — tools for thermal energetics studies. American Zoologist 25:933–943. Google Scholar
  • 5. G. S. Bakken, A. F. Boysen, C. E. Korschgen, K. P. Kenow, and S. L. Lima . 2001. Design and performance of a rugged standard operative temperature thermometer for avian studies. Journal of Thermal Biology 26:595–604. Google Scholar
  • 6. R. M R. Barclay and R. M. Brigham . 2001. Year-to-year reuse of tree-roosts by California bats (Myotis californicus) in southern British Columbia. American Midland Naturalist 146:80–85. Google Scholar
  • 7. J. G. Boyles and L. W. Robbins . 2006. Comparison of summer and winter roost trees used by evening bats (Nycticeius humeralis) in Missouri. American Midland Naturalist 155:210–220. Google Scholar
  • 8. R. M. Brigham, M. J. Vonhof, R. M R. Barclay, and J. C. Gwilliam . 1997. Roosting behavior and roost-site preferences of forest-dwelling California bats (Myotis californicus). Journal of Mammalogy 78:1231–1239. Google Scholar
  • 9. T. C. Carter and G. A. Feldhamer . 2005. Roost tree use by maternity colonies of Indiana bats and northern long-eared bats in southern Illinois. Forest Ecology and Management 219:259–268. Google Scholar
  • 10. B. J. Chruszcz and R. M R. Barclay . 2002. Thermoregulatory ecology of a solitary bat, Myotis evotis, roosting in rock crevices. Functional Ecology 16:18–26. Google Scholar
  • 11. L. H. Crampton and R. M R. Barclay . 1998. Selection of roosting and foraging habitat by bats in different-aged aspen mixedwood stands. Conservation Biology 12:1347–1358. Google Scholar
  • 12. P. M. Cryan, M. A. Bogan, and G. M. Yanega . 2001. Roosting habits of four bat species in the Black Hills of South Dakota. Acta Chiropterologica 3:43–52. Google Scholar
  • 13. D. K N. Dechmann, E. K V. Kalko, and G. Kerth . 2004. Ecology of an exceptional roost: energetic benefits could explain why the bat Lophostoma silvicolum roosts in active termite nests. Evolutionary Ecology Research 6:1037–1050. Google Scholar
  • 14. D. Fortin, J. Larochelle, and G. Gauthier . 2000. The effect of wind, radiation and body orientation on the thermal environment of greater snow goose goslings. Journal of Thermal Biology 25:227–238. Google Scholar
  • 15. G. E. Hengst and J. O. Dawson . 1994. Bark properties and fire resisitance of selected tree species from the central hardwood region of North America. Canadian Journal of Forest Research 24:688–696. Google Scholar
  • 16. O. Horvath 1964. Seasonal differences in rufous hummingbird nest height and their relation to nest climate. Ecology 45:235–241. Google Scholar
  • 17. S. R. Humphrey, A. R. Richter, and J. B. Cope . 1977. Summer habitat and ecology of the endangered Indiana bat, Myotis sodalis. Journal of Mammalogy 58:334–346. Google Scholar
  • 18. J. T. Hutchinson and M. J. Lacki . 2000. Selection of day roosts by red bats in mixed mesophytic forests. Journal of Wildlife Management 64:87–94. Google Scholar
  • 19. J. T. Hutchinson and M. J. Lacki . 2001. Possible microclimate benefits of roost site selection in the red bat, Lasiurus borealis, in mixed mesophytic forests of Kentucky. Canadian Field-Naturalist 115:205–209. Google Scholar
  • 20. E. J. Hyer and S. J. Goetz . 2004. Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: assessments for a boreal forest site. Agricultural and Forest Meteorology 122:157–174. Google Scholar
  • 21. J. E. Gardner, J. D. Garner, and J. E. Hofmann . 1991. Summer roost selection and roosting behavior of Myotis sodalis (Indiana bat) in Illinois. Unpublished Report. Illinois Natural History Survey. Champaign. 56. pp. Google Scholar
  • 22. M. C. Kalcounis and R. M. Brigham . 1998. Secondary use of aspen cavities by tree-roosting big brown bats. Journal of Wildlife Management 62:603–611. Google Scholar
  • 23. M. C. Kalcounis-Rüppell, J. M. Psyllakis, and R. M. Brigham . 2005. Tree roost selection by bats: and empirical synthesis using meta-analysis. Wildlife Society Bulletin 33:1123–1132. Google Scholar
  • 24. G. Kerth and K. Reckardt . 2003. Information transfer about roosts in female Bechstein's bats: an experimental field study. Proceedings of the Royal Society of London B 270:511–515. Google Scholar
  • 25. T. H. Kunz 1982. Roosting ecology of bats. Pp 1–55. in Ecology of bats T. H. Kunz , editor. ed. New York Plenum Press. 425. pp. Google Scholar
  • 26. A. Kurta, D. King, J. A. Teramino, J. M. Stribley, and K. J. Williams . 1993. Summer roosts of the endangered Indiana bat (Myotis sodalis) on the northern edge of its range. American Midland Naturalist 129:132–138. Google Scholar
  • 27. M. J. Lacki and M. D. Baker . 2003. A prospective power analysis and review of habitat characteristics used in studies of tree-roosting bats. Acta Chiropterologica 5:199–208. Google Scholar
  • 28. C. L. Lausen and R. M R. Barclay . 2006. Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. Journal of Mammalogy 87:362–370. Google Scholar
  • 29. S. E. Lewis 1995. Roost fidelity of bats: a review. Journal of Mammalogy 76:481–496. Google Scholar
  • 30. M. A. Menzel, T. C. Carter, W. M. Ford, and B. R. Chapman . 2001. Tree-roost characteristics of subadult and female adult evening bats (Nycticeius humeralis) in the Upper Coastal Plain of South Carolina. American Midland Naturalist 145:112–119. Google Scholar
  • 31. K. W. Ragland, D. J. Aerts, and A. J. Baker . 1991. Properties of wood for combustion analysis. Bioresource Technology 37:161–168. Google Scholar
  • 32. I. Ruczyyski and W. Bogdanowicz . 2005. Roost cavity selection by Nyctalus noctula and N. leisleri (Vespertilionidae, Chiroptera) in Bia³owie¿a Primeval Forest, eastern Poland. Journal of Mammalogy 86:921–930. Google Scholar
  • 33. J. A. Sedgeley 2001. Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. Journal of Applied Ecology 38:425–438. Google Scholar
  • 34. J. A. Sedgeley and C. F J. O'Donnell . 1999. Factors influencing the selection of roost cavities by a temperate rainforest bat (Vespertilionidae: Chalinolobus tuberculatus) in New Zealand. Journal of Zoology (London) 249:437–446. Google Scholar
  • 35. P. G. Smith and P. A. Racey . 2005. The itinerant Natterer: physical and thermal characteristics of summer roosts of Myotis nattereri (Mammalia: Chiroptera). Journal of Zoology (London) 266:171–180. Google Scholar
  • 36. C. R. Vispo and G. S. Bakken . 1993. The influence of thermal conditions on the surface activity of thirteen-lined ground squirrels. Ecology 74:377–389. Google Scholar
  • 37. M. J. Vonhof and R. M R. Barclay . 1997. Use of tree stumps as roosts by the western long-eared bat. Journal of Wildlife Management 61:674–684. Google Scholar
  • 38. K. L. Wiebe 2001. Microclimate of tree cavity nests: is it important for reproductive success in northern flickers?. Auk 118:412–421. Google Scholar
  • 39. C. K R. Willis and R. M. Brigham . 2004. Roost switching, roost sharing and social cohesion: forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Animal Behaviour 68:495–505. Google Scholar
  • 40. C. K R. Willis and R. M. Brigham . 2005. Physiological and ecological aspects of roost selection by reproductive female hoary bats (Lasiurus cinereus). Journal of Mammalogy 86:85–94. Google Scholar
  • 41. C. K R. Willis, K. A. Kolar, A. L. Karst, M. C. Kalcounis-Rueppell, and R. M. Brigham . 2003. Medium- and long-term reuse of trembling aspen cavities as roosts by big brown bats (Eptesicus fuscus). Acta Chiropterologica 5:85–90. Google Scholar
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.