PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 02 |

Tytuł artykułu

Isolation and expression analysis of miR165a and REVOLUTA from Brassica species

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study was performed to survey the nature and extent of sequence conservation and divergence of miR165a and its target REVOLUTA (REV), a HD-ZIP III family member from Brassica encompassing both diploid and allotetraploid genomes. Post-transcriptional gene silencing (PTGS)-based regulation in plant requires precise pairing of the miRNA–mRNA target. We identified length and sequence polymorphisms in pre-miR165a, although 21 nt mature sequence was largely invariant. One Single Nucleotide Polymorphism (SNP) each in mature miR165a that has the potential to disrupt PTGS was detected in one clone each from B. rapa var. Chinese Cabbage and B. oleracea var. Brussels Sprout. The miR165 binding site in REV in Brassica species is split between exons 4 and 5 and is reconstituted in the mRNA with no sequence variation. In REV, allelic variation can be observed in the flanking exonic and intronic regions in both diploid and allopolyploid species of Brassica indicating a strong selection pressure for maintaining the miR165a target site in REV such that deleterious mutation at the site of PTGS does not accumulate in the population. In addition, the present study indicates that miR165a is expressed in organ-specific manner and regulates its target transcript level through PTGS mechanism.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

02

Opis fizyczny

p.399-410,fig.,ref.

Twórcy

autor
  • Department of Biotechnology, Hamdard University (Jamia Hamdard), Delhi 110 062, India
  • Department of Biotechnology, Hamdard University (Jamia Hamdard), Delhi 110 062, India
  • Department of Biotechnology, Hamdard University (Jamia Hamdard), Delhi 110 062, India
autor
  • Department of Biotechnology, Hamdard University (Jamia Hamdard), Delhi 110 062, India

Bibliografia

  • Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376
  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563
  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
  • Byrne ME (2006) Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes. PLoS Genet 2:e89
  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:179
  • Choudhuri S (2010) Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxic 24:195–216
  • Comes HP, Abbott RJ (2001) Molecular phylogeography, reticulation, and lineage sorting in mediterranean senecio sect. senecio (Asteraceae). Evolution 55:1943–1962
  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214
  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774
  • Floyd SK, Bowman JL (2004) Ancient miRNA target sequence in plants. Nature 428:485–486
  • Gasic EV, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12
  • Guo X, Gui Y, Wang Y, Zhu QH, Helliwell C, Fan L (2008) Selection and mutation on microRNA target sequences during rice evolution. BMC Genomics 9:454
  • Ji L, Liu X, Yan J, Wang W, Yumul RE et al (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:e1001358. doi:10.1371/journal.pgen.1001358
  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799
  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88
  • Jung J, Park CM (2007) miR166/165 genes exhibit dynamic expression patterns in regulating leaf apical meristem and floral development in Arabidopsis. Planta 225:1327–1338
  • Khraiwesh B, Arif M, Seumel G, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122
  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM (2005) MicroRNA directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948
  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452
  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30
  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 50 region. EMBO J 23:3356–3364
  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713
  • Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Noncell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313
  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot 7:389–452
  • Ochando I, Jover-Gil S, Ripoll JJ, Candela H, Vera A, Ponce MR, Martı0nez-Laborda A, Micol JL (2006) Mutations in the micro-RNA complementarity site of the INCURVATA4 gene perturb meristem function and adaxialize lateral organs in Arabidopsis. Plant Physiol 14:607–619
  • Osborn TC (2004) The contribution of polyploidy to variation in Brassica species. Physiol Plant 121:531–536
  • Prigge MJ, Clark SE (2006) Evolution of the class III HD-ZIP gene family in land plants. Evol Dev 8:350–361
  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, ontagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76
  • Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of miR164, CUP-SHAPED COTYLEDON genes and LATERAL SUPPRESSOR controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76
  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831
  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Barlel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520
  • Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53
  • Sambrook, Russell (2001) Molecular cloning, a laboratory mannual, 3rd edn. Cold Spring Harbour Laboratory Press, New York Sarwat M, Das S, Srivastava PS (2008) Analysis of genetic diversity through AFLP, SAMPL, ISSR and RAPD in Tribulus terrestris, a medicinal herb. Plant Cell Rep 27:519–528
  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019
  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771
  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156 targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243
  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862
  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166 g and its AtHD-ZIP target genes. Development 132:3657–3668
  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218
  • Yu L, Yu X, Shen R, He Y (2005) HYL1 gene maintains venation and polarity of leaves. Planta 221:231–242
  • Zhong R, Ye ZH (2007) Regulation of HD-ZIP III genes by microRNA165. Plant Signal Behav 2:351–353
  • Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404
  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fd0e8bc7-8ef5-4dae-bb87-ceafcb29f08c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.