PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 12 | 2 |

Tytuł artykułu

On determination of the relaxation spectrum of viscoelastic materials from discrete-time stress relaxation data

Autorzy

Treść / Zawartość

Warianty tytułu

PL
O identyfikacji spectrum relaksacji materialow lepkosprezystych na podstawie dyskretnych pomiarow modulu relaksacji

Języki publikacji

EN

Abstrakty

EN
PL

Wydawca

-

Rocznik

Tom

12

Numer

2

Opis fizyczny

p.217-222,fig.,ref.

Twórcy

  • Department of Mechanical Engineering and Automatics, University of Life Sciences in Lublin, Doswiadczalna 50A, 20-280 Lublin, Poland

Bibliografia

  • 1. Caram Y., Bautista F., Puig J.E., Manero O., 2006: On the rheological modeling of associative polymers. Rheologica Acta, 46, 45-57.
  • 2. Cespi M., Bonacucina G., Misici-Falzi M., Golzi R., Boltri L., Palmieri G.F., 2007: Stress relaxation test for the characterization of the viscoelasticity of pellets. European Journal of Pharmaceutics and Biopharmaceutics, 67, 476-484.
  • 3. Eklund J.M. Korenberg M.J., McLellan P.J., 2007: Nonlinear system identification and control of chemical processes using fast orthogonal search. Journal of Process Control, 17, 742-754.
  • 4. Elster C., Honerkamp J., Weese J., 1991: Using regularization methods for the determination of relaxation and retardation spectra of polymeric liquids. Rheological Acta, 30, 161-174.
  • 5. Ferry J.D., 1980: Yiscoelastic properties of polymers. John Wiley & Sons, New York.
  • 6. Goethals I., Pelckmans K., Suykens J.A.K., De Moor B., 2005: Identification of MIMO Hammerstein models using least squares support vector machines. Automatica, 41, 1263-1272.
  • 7. Gołacki K., Kołodziej P., 2011: Impact testing of biological material on the example of apple tissue. TEKA Commission of Motorization and Power Industry in Agriculture, 11c, 74-82.
  • 8. Heuberger P.S.C., Van den Hof P.M.J., Bosgra O.H., 1995: A generalized orthonormal basis for linear dy-namical systems. IEEE Transactions on Automatic Control, 40, 451-465.
  • 9. Korenberg M.J., 1989: Fast orthogonal algorithms for nonlinear system identification and time-series analysis. In: Advanced Methods of Physiological System Mod-eling, Yol. 2, edited by Y. Z. Marmarelis. New York: Plenum, 1989, 165-177.
  • 10.Kubacki K.S., 2006: Should we always use the mean value. TEKA Commission of Motorization and Power Industry in Agriculture, 6, 55-66.
  • 11. Kusińska E., Kornacki A., 2008: Testing of a mathematical model of grain porosity. TEKA Commission of Motorization and Power Industry in Agriculture, 8A, 112-117.
  • 12. Lebedev N.N., 1972: Special functions and their applications. Dover, New York.
  • 13. Malkin A. Ya., Masalova I., 2001: From dynamic modulus via different relaxation spectra to relaxation and creep functions. Rheological Acta, 40, 261-271.
  • 14.Ninness B., Hjalmarsson H., Gustafsson F., 1999: The fundamental role of general orthogonal bases in system identification. IEEE Transactions on Automatic Control, 44(7), 1384-1407.
  • 15. Paulson K.S., Jouravleva S., McLeod C.N., 2000: Dielectric Relaxation Time Spectroscopy. IEEE Trans. on Biomedical Engineering, 47, 1510-1517.
  • 16. Rao M.A., 1999: Rheology of Fluid and Semisolid Foods. Principles and Applications. Aspen Publishers, Inc., Gaithersburg, Maryland.
  • 17. Schwetlick A.H., 1988: Numerische lineare algebra. YEB Deutcher Yerlag der Wissenschaften, Berlin.
  • 18. Stankiewicz A., 2003: A scheme for identification of continuous relaxation time spectrum of viscoelastic plant materials. Acta Scientiarum Polonorum, Seria Technica 25. Agraria, 2(2), 77-91 [in Polish].
  • 19. Stankiewicz A., 2007: Identification of the relaxation 26. spectrum of viscoelastic plant materials. Ph. D. Thesis, Agricultural University of Lublin, Poland [in Polish].
  • 20. Stankiewicz A., 2010: Identification of the relaxation 27. and retardation spectra of plant viscoelastic materials using Chebyshev functions. TEKA Commission of Motorization and Power Industry in Agriculture, 10, Part I. Identification algorithm, 363-371; Part II. Analysis, 372-378; Part III. Numerical studies and application example, 396-404.
  • 21. Stankiewicz A., 2010: On the existence and uniqueness of the relaxation spectrum of viscoelastic materials. TEKA Commission of Motorization and Power Industry in Agriculture 10, Part I: The main theorem, 379-387; Part II: Other existence conditions, 388-395.
  • 22. Stankiewicz A., 2012: An algorithm for identification of the relaxation spectrum of viscoelastic materials from discrete-time stress relaxation noise data. TEKA Commission of Motorization and Power Industry in Agriculture (submitted for publication).
  • 23. Tikhonov A.N., Arsenin V.Y., 1977: Solutions of Illposed Problems. John Wiley & Sons, New York.
  • 24. Tscharnuter D., Jerabek M., Major-Z., Lang R.W., 2011: On the determination of the relaxation modulus of PP compounds from arbitrary strain histories. Mechanics of Time-Dependent Materials, 15, 1-14.
  • 25. Vazirani V.V., 2003: Approximation Algorithms. Springer-Verlag, Berlin Heidelberg.
  • 26. Wang L., 2004: Discrete model predictive controller design using Laguerre functions. Journal of Process Control 14, 131-142.
  • 27. Zi G., Bażant Z. P., 2002: Continuous Relaxation Spectrum for Concrete Creep and its Incorporation into Microplane Model M4. J. Eng. Mechanics, ASCE 128(12), 1331-1336.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fcf49e9e-b96b-4365-b115-a2949b071d52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.