PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 19 | 2 |

Tytuł artykułu

Differential expression of Toll - like receptor 4 signaling pathway genes in Escherichia coli F18 - resistant and - sensitive Meishan piglets

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Toll-like receptor 4 (TLR4) signaling pathway is an important inflammatory pathways associated with the progression of numerous diseases. The aim of the present study was to investigate the relationship between TLR4 signaling and resistance to Escherichia coli F18 in locally weaned Meishan piglets. Using a real-time PCR approach, expression profiles were determined for key TLR4 signaling pathway genes TLR4, MyD88, CD14, IFN-α, IL-1β and TNF-α in the spleen, thymus, lymph nodes, duodenum and jejunum of E. coli F18-resistant and -sensitive animals. TLR4 signaling pathway genes were expressed in all the immune organs and intestinal tissues, and the expression was generally higher in the spleen and lymph nodes. TLR4 transcription was higher in the spleen of sensitive piglets (p<0.05), but there was no significant difference in TLR4 mRNA levels in other tissues. Similarly, CD14 transcription was higher in lymph nodes of sensitive animals (p<0.05) but not in other tissues. IL-1β expression was higher in the spleen and in the duodenum of resistant piglets (p<0.05, p<0.01, respectively), and there were no significant differences in other tissues. There were also no significant differences in the expression of MyD88, TNF-α and IFN-α between sensitive and resistant piglets (p>0.05). These results further confirm the involvement of the TLR4 signaling pathway in resistance to E. coli F18 in Meishan weaned piglets. The resistance appeared to be mediated via downregulation of TLR4 and CD14, and upregulation of MyD88 that may promote the release of cytokines TNF-α, IL-1β, IFN-α and other inflammatory mediators which help to fight against E. coli F18 infection.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.303-308,fig.,ref.

Twórcy

autor
  • College of Animal Science and Technology, Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
autor
  • College of Animal Science and Technology, Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
autor
  • College of Animal Science and Technology, Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
autor
  • College of Animal Science and Technology, Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
autor
  • College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
autor
  • College of Animal Science and Technology, Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China
autor
  • College of Animal Science and Technology, Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, China

Bibliografia

  • Bao WB, Pan ZY, Zhu J, Ye L, Du ZD, Cai JJ, Huang XG, Zhu GQ, Wu SL (2011) Differentiation of porcine TLR4 gene mRNA expression between resistant and sensitive resource populations to ETEC F18. Acta Veterinaria et Zootechnica Sinica 42: 278-283.
  • Bao WB, Wu SL, Musa HH, Zhu GQ, Chen GH (2008) Genetic variation at the alpha-1-fucosyltransferase (FUT1) gene in Asian wild boar and Chinese and Weatern commercial pig breeds. J Anim Breed Genet 125: 427-430.
  • Bao WB, Ye L, Pan ZY, Zhu J, Du ZD, Zhu GQ, Huang XG, Wu SL (2012) Microarray analysis of differential gene expression in sensitive and resistant pig to Escherichia coli F18. Anim genet 43: 525-534.
  • Beutler B (2005) The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57: 385-392.
  • Dauphinee SM, Karsan A (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86: 9-22.
  • Hawiger J (2001) Innate immunity and inflammation: a transcriptional paradigm. Immunol Res 23: 99-109.
  • Haziot A, Hijiya N, Gangloff SC, Silver J, Goyert SM (2001) Induction of a novel mechanism of accelerated bacterial clearance by lipopolysaccharide in CD14-deficient and Toll-like receptor 4-deficient mice. J Immunol 166: 1075-1078.
  • Hahn E, Wild P, Schraner EM, Bertschinger HU, Haner M, Muller SA, Aebi U (2000) Structural analysis of F18 fimbriae expressed by porcine toxigenic Escherichia coli. J Struct Biol 132: 241-250.
  • Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beautler B (2003) Identification of Lps 2 as a key transducer of MyD88-independent TIR signalling. Nature 424: 743-748.
  • Imberechts H, De Greve H, Schlicker C, Bouchet H, Pohl P, Charlier G, Bertschinger H, Wild P, Vandekerckhove J, Van Damme J (1992) Characterization of F107 fimbriae of Escherichia coli 107/86, which causes edema disease in pigs and nucleotide sequence of the F107 major fimbrial subunit gene, fed A. Infect Immun 60: 1963-1971.
  • Imberechts H, Deprez P, Van Driessche E, Pohl P (1997) Chicken egg yolk antibodies against F18ab fimbriae of Escherichia coli inhibit shedding of F18 positive E. Coli by experimentally infected pigs. Vet Microbiol 54: 329-341.
  • Kawai T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115-122.
  • Liu YW, Chen CC, Tseng HP, Chang WC (2006) Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK- and NF-kappaB-induced CCAAT/enhancer-binding protein delta in mouse macrophages. Cell Signal 18: 1492-1500.
  • Liu L, Wang J, Zhao QH, Zi C, Wu ZC, Su XM, Huo YJ, Zhu GQ, Wu SL, Bao WB (2013) Genetic variation in exon 10 of the BPI gene is associated with Escherichia coli F18 susceptibility in Sutai piglets. Gene 523: 70-75.
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCTmethod. Methods 25: 402-408.
  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135-145.
  • Metkar S, Kim KS, Silver J, Goyert SM (2012) Differential expression of CD14-dependent and independent pathways for chemokine induction regulates neutrophil trafficking in infection. J Leukoc Biol 92: 389-396.
  • Pandey S, Agrawal DK (2006) Immunobiology of Toll-like receptors: emerging trends. Immunol Cell Biol 84: 333-341.
  • Pan H, Wu X (2012) Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells. Biochem Biophy Res Co 420: 685-691.
  • Pasare C, Medzhitov R (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6: 1382-1387.
  • Peri F Piazza M (2012) Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv 30: 251-260.
  • Rippinger P, Bertschinger HU, Imberechts H, Nagy B, Sorg I, Stamm M, Wild P, Wittiq W (1995) Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol 45: 281-295.
  • Rogers GL, Suzuki M, Zolotukhin I, Markusic DM, Morel LM, Lee B, Ertl HCJ, Herzog RW (2015) Unique roles of TLR9- and MyD88-dependent and -independent pathways in adaptive immune responses to AAV-mediated gene transfer. J Innate Immun 7: 302-314.
  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17: 1-14.
  • Takeda K, Kaisho T, Akira, S (2003) Toll-like receptors. Annu Rev Immunol 21: 335-376.
  • Vogeli P, Meijerink E, Fries R, Neuenschwander S, Vorlander N, Stranzinger G, Bertschinger HU (1997) A molecular test for the detection of E. Coli F18 receptors: a breakthrough in the struggle against oedema disease and post-weaning diarrhoea in swine. Schweiz Arch Tierheilkd 139: 479-484.
  • Wright SD, Ramos RA, Tobias PS (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431-1433.
  • Wu ZC, Dong WH, Liu Y, Yang JS, Zhu GQ, Wu SL, Bao WB (2014) Attack experiment and phenotype analysis of Meishan piglets by E.coli F18 strain. Acta Veterinaria et Zootechnica Sinica 45: 1608-1615.
  • Yan XM, Ren J, Guo YM, Ding NS, Chen KF, Gao J, Ai HS, Chen CY, Na JW, Huang LS (2003) Research on the genetic variations of α1-fucosyltransferase (FUT1) gene in 26 pig breeds. Acta Genetica Sinica 30: 830-834.
  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S (2003a) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4: 1144-1150.
  • Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003b) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640-643.
  • Zacharowski K, Zacharowski PA, Koch A, Baban A, Tran N, Berkels R, Papewalis C, Schulze-Osthoff K, Knuefermann P, Zahringer U, Schumann RR, Rettori V, McCann SM, Bornstein SR (2006) Toll-like receptor 4 plays a crucial role in the immune-adrenal response to systemic inflammatory response syndrome. Proc Natl Acad Sci USA 103: 6392-6397.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fc6935d1-2636-4475-9a70-4abe0399a06f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.