PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 68 | 1 |

Tytuł artykułu

Vertical distribution of the root system of linseed (Linum usitatissimum L.) and legumes in pure and mixed sowing

Treść / Zawartość

Warianty tytułu

PL
Pionowy rozkład systemu korzeniowego lnu oleistego (Linum usitatissimum L.) i roślin strączkowych w siewie czystym i mieszanym

Języki publikacji

EN

Abstrakty

EN
Root competition for below-ground resources between edible plants may provide for long-term sustainability of agriculture systems. Intercropping can be more productive than a pure crop due to taking advantage of the morphological differences between species. In pure cropping, all biophysical interactions between plants occur through soil conditions. In intercropping, competition for water and nutrients is of major importance, but if the roots of one species occupy the zone just underneath the roots of the other crop, they can better use the resources of the root zone of the crop. The root system demonstrates a high degree of plasticity in its development in response to local heterogeneity of the soil profile and plant density. This study aimed at determining: (i) the morphological characteristics of the root systems of linseed, pea and vetch depending on the method of sowing; (ii) the root distribution in various soil types and at different soil profile depths (0–15 cm, 15–30 cm). Two three-year field experiments were conducted on two soil types in south Poland: soil A – Luvic Phaeozem (s1) and soil B – Eutric Cambisol (s2). These results show that linseed was more aggressive toward both legumes in mixture, but it produced lower yield compared to pure cropping. The environmental stress of plants in mixtures increased the relative weight of roots, which resulted in decreasing the root-shoot ratio (RSR).
PL
Konkurencja korzeniowa międzygatunkowa roślin jadalnych o zasoby siedliska prowadzi w dłuższym okresie czasu do rozwoju zrównoważonego systemu rolnictwa. Siew mieszany roślin jest bardziej produktywny w stosunku do siewu czystego z uwagi na wykorzystanie morfologicznych różnic pomiędzy gatunkami. W siewie czystym warunki glebowe w istotny sposób kształtują biofizyczne zróżnicowanie roślin. Natomiast w siewie mieszanym konkurencja korzeni roślin o wodę i składniki pokarmowe jest nadrzędnie istotna, jednak w przypadku roślin wykształcających korzenie na różnych głębokościach, zasoby siedliska są lepiej wykorzystywane przez rośliny. System korzeniowy roślin oleistych i strączkowych przedstawia różny stopień plastyczności w zależności od lokalnej różnorodności profilu gleby oraz zagęszczenia roślin w łanie. Celem pracy była (i) ocena cech morfologicznych systemu korzeniowego lnu oleistego, grochu siewnego i wyki siewnej w zależności od sposobu siewu: siew czysty lnu, grochu i wyki, siew mieszany lnu z grochem (I), lnu z wyką (II), (ii) ocena dystrybucji systemu korzeniowego roślin w różnych warunkach glebowych: A – czarnoziem, B – gleba brunatna właściwa oraz różnej głębokości (0–15 cm, 15–30 cm). W badaniach wykazano, że len oleisty wykształcił bardziej agresywny system korzeniowy w stosunku do roślin strączkowych, jednak uzyskując niższy plon nasion w stosunku do siewu czystego. Stres środowiskowy roślin w siewie mieszanym wpłynął na wzrost masy korzeni, czego efektem było obniżenie wskaźnika RSR.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

68

Numer

1

Opis fizyczny

p.43-52,fig.,ref.

Twórcy

  • Department of Crop Production, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Institute of Machinery Exploitation, Ergonomics and Production Processes, University of Agriculture in Krakow, Balicka 116B, 31-149 Krakow, Poland
autor
  • Department of Crop Production, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Department of Agrotechnology and Agricultural Ecology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
autor
  • Department of Crop Production, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland

Bibliografia

  • 1. Dapaah HK, Asafu-Agyei JN, Ennin SA, Yamoah C. Yield stability of cassava, maize, soya bean and cowpea intercrops. J Agric Sci.2003;140:73–82.
  • 2. Hauggard-Nielsen H, Auggard-Nielsen H, Andersen MK, Jornsgaard B, Jensen ES. Density and relative frequency effects on competitiveinteractions and resource use in pea-barley intercrops. Field CropRes. 2006;95:256–267. http://dx.doi.org/10.1016/j.fcr.2005.03.003
  • 3. Kordas L. Energy and economic effects of reduced tillage in crop rotation. Acta Sci Pol Agric. 2005;4:51–59.
  • 4. Anderson RL, Bowman RA, Nielsen DC, Vigil MF, Aiken RM, Benjamin JG. Alternative crop rotations for central Great Plains. JProd Agric. 1999;12:95–99.
  • 5. Campbell CA, Zentner RP, Seller F, Biederbeck VO, Leyshon AJ. Comparative effects of garin-lentil-wheat and monoculture wheat on cropproduction, N economy and N fertility in a Brown Chernozem. Can JPlant Sci. 1992;72:1091–1107. http://dx.doi.org/10.4141/cjps2011-067
  • 6. Campbell CA, Zentner RP. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan – effect of crop rotationsand fertilizers. Can J Soil Sci. 2000;80:179–192. http://dx.doi.org/10.4141/s99-028
  • 7. Biederbeck VO, Zentner RP, Campbell CA. Soil microbial populations and activities as influenced by legume green fallowing in asemiarid loam. Soil Bio Biochem. 2005;37:1775–1784. http://dx.doi.org/10.1016/j.soilbio
  • 8. Li L, Zhang FS, Li XL, Christie P, Sun JH, Yang SC. Interspecific facilitation of nutrient uptake by intercropped maize andfaba bean. Nut Cyc Agroecosys. 2003;68:61–71. http://dx.doi.org/10.1023/A:1021885032241
  • 9. Miller PR, Wadding J, McDonald CL, Derksen DA. Cropping sequence affects wheat productivity on the semiarid northern Great Plains. Can J Plant Sci. 2002;82:307–318. http://dx.doi.org/10.4141/P01-116
  • 10. Zając T, Oleksy A, Stokłosa A, Klimek-Kopyra A, Kulig B. The development competition and productivity of linseed and pea-cultivarsgrown in a pure sowing or in a mixture. Eur J Agron. 2013;44:22–31.http://dx.doi.org/10.1016/j.eja.2012.08.001
  • 11. Klimek-Kopyra A, Zając T, Rembilas K. Evaluation of cooperation effect in intercrops: experiment and mathematical model. Eur J Agron.2013;51:9–17. http://dx.doi.org/10.1016/j.eja.2013.06.002
  • 12. Gan YT, Wang J, Bing DJ, Miller PR, McDonald CL. Water use of pulse crops at various plant densities under fallow and stubble conditionsin a semiarid environment. Can J Plant Sci. 2007;87:719–722. http://dx.doi.org/10.4141/P06-117
  • 13. Ndakidemi PA. Manipulating legume/cereal mixtures to optimize the above and below ground interactions in the traditional African cropping systems. Afr J Biotechnol. 2006;5:2526–2533. http://dx.doi. org/10.5897/AJB2006.000-5113
  • 14. Fageria NK. Influence of dry matter and length of roots on growth of five field crops at varying soil zinc and copper levels. J Plant Nutr.2004;27:1517–1523. http://dx.doi.org/10.1081/PLN-200025995
  • 15. Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases riceyield under drought conditions. Nat Genet. 2013;45:1097–1102. http://dx.doi.org/10.1038/ng.2725
  • 16. Ingram KT, Bueno FD, Namuco OS, Beyrouty CA. Rice root traits for drought resistance and their genetic variation. In: Kirk GJ, editor. Rice roots: nutrient and water use. Manila: International Rice Research Institute; 1994. p. 67–70.
  • 17. Markham JH, Chanway CP. Measuring plant neighbour effects. Funct Ecol. 1996;10:548–549.
  • 18. Bhatti IH, Ahmad R, Jabbar A, Nazir MS, Mahmood T.. Competitive behaviour of component crops in different sesame-legume intercroppingsystems. Int J Agric Biol. 2006;8:165–167.
  • 19. Wahla IH, Ahmad R, Ehsanullah A, Jabbar A. Competitive functions of components crops in some barley based intercropping systems. IntJ Agric Biol. 2009;11:69–72.
  • 20. de Witt CT. On competition. Verslagen van Landbouwkundige Onderzoekingen. 1960;66(8):1–82.
  • 21. StatSoft Inc. STATISTICA (data analysis software system), version 10; 2011.
  • 22. Itoh H, Hayashi S, Nakajima T, Hayashi T, Yoshida H, Yamazaki K, et al. Effects of soil type, vertical root distribution and precipitation on grain yield of winter wheat. Plant Prod Sci. 2009;12:503–513. http://dx.doi.org/10.1626/pps.12.503
  • 23. Głąb T, Ścigalska B, Łanuz B. Effect of crop rotation on the root system morphology and productivity of triticale (×TriticosecaleWittm). J Agric Sci. 2014;152:642–654. http://dx.doi.org/10.1007/s11738-012-1097-5
  • 24. Liu L. Root systems of oilseed and pulse crops – morphology, distribution and growth patterns [MSc thesis]. Saskatoon, SK: University of Saskatchewan; 2009.
  • 25. Wright GC, Rao NRC. Peanut water relations. In: Smartt J, editor. The groundnut crop. London: Chapman & Hall; 1994.p. 281–325.
  • 26. Matsui T, Singh BB. Root characteristics in cow- pea related to drought tolerance at the seedling stage. Exp Agric. 2003;39:29–38.
  • 27. Taiz L, Zeiger E. Stress physiology. In: Taiz L, Zeiger E, editors. Plant physiology. Sunderland, MA: Sinauer; 2006. p. 671–681.
  • 28. Ge Z, Rubio YG, Lynch JP. The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: resultsfrom a geometric simulation model. Plant Soil. 2000;218:159–171.http://dx.doi.org/10.1023/A:1014987710937
  • 29. Wang X, Yan Y, Liao H. Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot. 2010;106:215–222.http://dx.doi.org/10.1093/aob/mcq029
  • 30. Xie YH, An S, Wu BF, Wang WW. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. EnvironExp Bot. 2006;57:195–200. http://dx.doi.org/10.1016/j.envexpbot
  • 31. Waisel Y, Eshel A. Functional diversity of various constituents of a single root system. In: Waisel Y, Eshel A, Kafkafi U, editors. Plant roots,the hidden half. New York, NY: Marcel Dekker; 2002. p. 157–174.
  • 32. Bengough AG, Bransby MF, Hans J, Mckenn SJ, Roberts TJ, Valentine TA. Root responses to soil physical conditions, growth dynamics fromfield to cell. J Exp Bot. 2006;57:437–447. http://dx.doi.org/10.1093/jxb/erj003
  • 33. Singh BP, Sainju UM. Soil physical and morphological properties and root growth. Hortic Sci. 1998;33:966–971.
  • 34. Fisher NM, Dunham RJ. The relationships in sorghum-soybean cropping systems with different physiology of tropical field crops. In:Goldsworthy PR, Fisher NW, editors. Root morphology and nutrientuptake. New York, NY: John Wiley & Sons; 1984. p. 85–117.
  • 35. Xu B, Shan L, Li F, Jiang J. Seasonal and spatial root biomass and water use efficiency of four forage legumes in semiarid northwest China.Afr J Biotechnol. 2007;6:2708–2714.
  • 36. Jensen ES, Ambus P, Bellostas N, Boisen S, Brisson N, Corre-Hellou G, et al. Intercropping of cereals and grain legumes for increasedproduction, weed control, improved product quality and preventionof N-losses in European organic farming systems. In: Andreasen CB, Elsgaard L, Sørensen LS, Hansen G, editors. Proceedings. Tjele: Danish Research Centre for Organic Food and Farming, DARCOF;2007. p. 180–181.
  • 37. Banik P, Sasmal T, Ghosal PK, Bagchi DK. Evaluation of mustard (Brassica compestris var. toria) and legume intercropping under 1:1 and 2:1 row – replacemnet series system. J Agron Crop Sci. 2000;185:9–14.
  • 38. Lauk R, Lauk E. Dual intercropping of common vetch and wheat or oats, effects on yields and interspecific competition. Agron Res. 2009;7:21–32.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fc50089f-2505-4903-a5b9-5c60d5239f6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.