PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 20 | 5 |
Tytuł artykułu

Temperature dependence of growth in maize seedlings and excised coleoptile segments

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of temperature in the range 22-32℃ and 25-40℃ on elongation growth of maize seedlings and coleoptiles excised from them was studied, respectively. It was found that elongation of maize seedling’s organs (root, mesocotyl and coleoptile) increased with increasing temperature in the range 22-32℃. However, when coleoptile segments excised from seedlings grown at highest temperature (32℃) were incubated at various temperatures (25, 30, 35, and 40℃) and in the presence of IAA their elongation growth was always lower compared to segments excised from seedlings grown at 22 and 27℃. Simultaneous measurements of elongation growth and external medium pH indicated that proton extrusion increased with increasing medium temperature from 25 to 35℃. The results presented here show that the temperatures at which the maize seedlings were cultivated are crucial for temperature dependence of a coleoptile segment’s elongation growth.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
20
Numer
5
Opis fizyczny
p.1221-1225,fig.,ref.
Twórcy
autor
  • Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
autor
  • Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
autor
  • Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
Bibliografia
  • 1. HOWARTH C.J. Genetic improvements of tolerance to high temperature. In Ashraf, M., Harris, P.J.C. (Eds.), Abiotic Stresses: Plant Resistance Through Breeding and Molecular Approaches. Howarth Press Inc., New York, 2005.
  • 2. SAMACH A., WIGGE P.A. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 8, 483, 2005.
  • 3. BUKOVNIK U., FU J., BENNETT M., PRASAD P.V.V., RISTIC Z. Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1a, in spring wheat. Funct. Plant Biol. 36, 234, 2009.
  • 4. WAHID A., GELANI S., ASHRAF M., FOOLAD M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 61, 199, 2007.
  • 5. PENFIELD S. Temperature perception and signal transduction in plants. New Phytol. 179, 615, 2008.
  • 6. FRANKLIN K.A. Light and temperature signal crosstalk in plant development. Curr. Opin. Plant Biol. 12, 63, 2009.
  • 7. DAVIES P.J. Plant hormones. Biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht. 2004.
  • 8. THINGNAES E., TORRE S., ERNSTSTEN A., MOE R. Day and night temperature responses in Arabidopsis: Effects on gibberellin and auxin content, cell size, morphology and flowering time. Annals Bot. 92, 601, 2003.
  • 9. KARCZ W., BURDACH Z. Effect of temperature on growth, proton extrusion and membrane potential in maize (Zea mays L.) coleoptile segments. Plant Grow. Regul. 52, 141, 2007.
  • 10. RAPPARINI F., TAM Y.Y., COHEN J.D., SLOVIN J.P. Indole-3-acetic acid metabolism in Lemma gibba undergoes dynamic changes in response to growth temperature. Plant Physiol. 128, 1410, 2002.
  • 11. GRAY W.W., OSTIN A., SANDBERG G., ROMANO C.P., ESTELLE M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 7197, 1998.
  • 12. POLAK M., TUKAJ Z., KARCZ W. Effect of temperature on the dose-response curves for auxin-induced elongation growth in maize coleoptile segments. Acta Physiol. Plant. DOI 10.1007/s11738-010-0563-1, 2011.
  • 13. PETERS W.S., FELLE H. Control of apoplast pH in corn coleoptile segments. I. The endogenous regulation of cell wall pH. J. Plant Physiol. 137, 655, 1991.
  • 14. PETERS W.S., FELLE H. Control of apoplast pH in corn coleoptile segments. II. The effect of various auxins and auxin analogues. J. Plant Physiol. 137, 691, 1991.
  • 15. CLAUSSEN M., LUTHEN H., BOTTGER M. Inside or outside? Localization of the receptor relevant to auxininduced growth. Physiol. Plant. 98, 861, 1996.
  • 16. KARCZ W., STOLAREK J., LEKACZ H., KURTYKA R., BURDACH Z. Comparative investigation of auxin and fusicoccin-induced growth and H+-extrusion in coleoptile ofZea mays L. Acta Physiol. Plant. 17, 3, 1995.
  • 17. KARCZ W., BURDACH Z. A comparison of the effects of IAA and 4-Cl-IAA on growth, proton secretion and membrane potential in maize coleoptile segments. J. Exp. Bot. 53, 1089, 2002.
  • 18. KARCZ W., KURTYKA R. Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biol. Plant. 51, 713, 2007.
  • 19. HAGER A., DEBUS G., EDEL H-G., STRANSKY H., SERRANO R. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma membrane H+-ATPase. Planta 185, 527, 1991.
  • 20. FRIAS I., CALDEIRA M.T., PEREZ-CASTINEIRA J.R., NAVARRO-AVINO J.P., CULIANEZ-MACIA F.A., KUPPINGER O., STRANSKY H., PAGES M., HAGER A., SERRANO R. A major isoform of the maize plasma membrane H+-ATPase: characterization and induction by auxin in coleoptiles. Plant Cell 8, 1533, 1996.
  • 21. HAGER A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J. Plant Res. 116, 483, 2003.
  • 22. CHRISTIAN M., STEFFENS B., SCHENECK D., BURMESTER S., BOTTGER M., LUTHEN H. How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biol. 8, 346, 2006.
  • 23. PHILIPPAR K., FUCHS I., LUTHEN H., HOTH S., BAUER C.S., HAGA K., THIEL G., LJUNG K., SANDBERG G., BOTTGER M., BECKER D., HEDRICH R. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. PNAS 96, 12186, 1999.
  • 24. TODE K., LUTHEN H. Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence. J Exp. Bot. 52, 251, 2001.
  • 25. BECKER D., HEDRICH R. Channelling auxin action: modulation of ion transport by indole-3-acetic acid. Plant Mol. Biol. 49, 349, 2002.
  • 26. MAYER A.M., POLJAKOFF-MAYBER A. The germination of seeds. 4th ed. Pergamon Press, Oxford, 1989.
  • 27. SOWIŃSKI P., RUDZIŃSKA-LANGWALD A., ADAMCZYK J., KUBICA I., FRONK J. Recovery of maize seedlings growth, development and photosynthetic efficiency after initial growth at low temperature. J. Plant Physiol. 162, 67, 2005.
  • 28. SZALAI G., PAL M., HORVATH E., JANDA T., PALDI E. Investigations on the adaptability of maize lines and hybrids to low temperature and cadmium. Acta Agr. Hung. 53, 183, 2005.
  • 29. HOLA D., KOČOVA M., ROTHOVA O., WILHELMOVA N., BENEŠOVA M. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: Photosynthesis and antioxidant enzymem. J. Plant Physiol. 164, 868, 2007.
  • 30. GREAVES J.A. Improving suboptimal temperature tolerance in maize – the search for variation. J. Exp. Bot. 47, 307, 1996.
  • 31. JANOWIAK F., LUCK E., DORFFLING K. Chilling tolerance of maize seedlings in the field during cold periods in spring is related to chilling-induced increase in abscisic acid level. J. Agron. Crop. Sci. 189, 156, 2003.
  • 32. BURDACH Z., KARCZ W. Effect of temperature on growth, proton extrusion and membrane potential in maize coleoptile segments incubated in the presence of chlorinated auxin (4-Cl-IAA). Curr. Top. Biophys. 30, 22, 2007.
  • 33. ORBOVIĆ V., POFF K. Effect of temperature on growth and phototropism of Arabidopsis thaliana seedlings. J. Plant Regul. 26, 222, 2007
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-fc1075ad-f522-4d2a-ac8d-e15726785c14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.