Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 64 | 4 |
Tytuł artykułu

Palaeobiology and evolutionary context of Angulithes mermeti, a streamlined early Late Cretaceous shallow - water nautiloid

Treść / Zawartość
Warianty tytułu
Języki publikacji
Cretaceous nautiloids are commonly characterized by inflated shells and prolonged stratigraphic ranges. In the Albian, the species of Angulithes appeared and compressed, short-lived forms with narrow venters emerged during the Cenomanian age. Based on a new description, the late Cenomanian nautiloid Angulithes mermeti is discussed with its palaeobiological background and placed in an evolutionary context of the Cenomanian lineage of Angulithes, considering contemporaneous palaeoenvironmental changes and inferred functional traits. A. mermeti is characterized by a nearly oxycone shell with sharp venter and narrow umbilicus, a fairly sinuous suture, low inter-septal distances, and an almost dorsal siphuncle. Its palaeobiogeographical occurrence was latitudinally restricted to shallow tropical–subtropical shelf seas with a preferred habitat depth between 5–50 m. Several morphological trends reflected by the Cenomanian species of the genus culminated in the late Cenomanian species A. mermeti, i.e., (i) increasing shell compression and sharpening of the venter, (ii) increasing folding of the septa, (iii) reduction of inter-septal distances, and (iv) dorsally directed migration of the siphuncle. The hydrodynamically efficient form was favorable to successfully populate the wide and shallow epicontinental seas that formed during the Cenomanian age. The increasing sutural sinuosity and the dense septal spacing aimed to buttress the shells against shell-breaking predators while the functional reason for the dorsal- directed migration of siphuncle is more elusive; it may have improved the efficiency of the hydrostatic apparatus and its internal position is beneficial in the case of predation, too. The gradual morphological change in the Cenomanian lineage of the genus Angulithes provides a well-constrained case study of rapid evolutionary response to major environmental pressure, i.e., the opening of newly available niches in the course of the great early Late Cretaceous transgression, in an otherwise rather bradytelic biotic group.
Słowa kluczowe
Opis fizyczny
  • Senckenberg Naturhistorische Sammlungen Dresden, Museum fur Mineralogie und Geologie, Sektion Palaozoologie, Konigsbrucker Landstrase 159, 01109 Dresden, Germany
  • Department of Geology, College of Science, Taibah University, Madinah 41411, Saudi Arabia
  • Department of Geology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
  • Aal, A. and Lelek, J. 1994. Structural development of the northern Sinai, Egypt and its implications on the hydrocarbon prospectivity of the Mesozoic. GeoArabia 1: 15–30.
  • Abdel-Gawad, G.I., Aboulela, N.M., and Gameil, M. 1992. Mollusca biostratigraphy of the Cenomanian–Turonian strata of Gebel Nezzazat area, West Central Sinai, Egypt. In: Proceedings of the First International Conference on the Geology of the Arab World, 321–332. Cairo University, Giza.
  • Abdel-Gawad, G.I., El Qot, G.M., and Mekawy, M.S. 2006. Cenomanian–Turonian macrobiostratigraphy of Abu Darag area, Northern Galala, Eastern Desert, Egypt. In: Proceedings of the eighth International Conference on the Geology of the Arab World, 553–568. Cairo University, Giza.
  • Abdel-Gawad, G.I., El Sheikh, H.A., Abdelhamid, M.A., El Beshtawy, M.K., Abed, M.M., Fürsich, F.T., and El Qot, G. 2004. Stratigraphic studies on some Upper Cretaceous successions in Sinai, Egypt. Egyptian Journal of Paleontology 4: 263–303.
  • Agassiz, L. 1847. An Introduction to the Study of Natural History, In a Series of Lectures Delivered in the Hall of the College of Physicians and Surgeons. 58 pp. Greeley and McElrath, New York.
  • Ayoub-Hannaa, W.S. 2011. Taxonomy and Palaeoecology of the Cenoma-nian–Turonian Macro-invertebrates from Eastern Sinai, Egypt. 410 pp. Ph.D. thesis, University of Würzburg, Würzburg.
  • Ayoub-Hannaa, W.S. and Fürsich, F.T. 2012. Cenomanian–Turonian ammonites from eastern Sinai, Egypt, and their biostratigraphic significance. Beringeria 42: 57–92.
  • Bandel, K. and Kuss, J. 1987. Depositional environment of the pre-rift sediments of the Galala Heights (Gulf of Suez, Egypt). Berliner geowissenschaftliche Abhandlungen A78: 1–48.
  • Barrier, E. and Vrielynck, B. 2008. Map 6: Cenomanian (99.6–93.5 Ma). In: E. Barrier and B. Vrielynck (eds.), Palaeotectonic Maps of the Middle East Tectono-Sedimentary Palinsspastic Maps from the Late Norian to Pliocene. Commission for the Geological Map of the World (CGMW/CCGM), Paris.
  • Barroso-Barcenilla, F., Audije-Gil, J., Berrocal-Casero, M., Callapez, P., Carenas, B., Comas-Rengifo, M.J., García Joral, F. García-Hidalgo, J.F., Gil-Gil, J., Goy, A., Ozkaya De Juanas, S.A., Rodríguez García, S., Faria Dos Santos, V., Segura, M., and Sevilla, P. 2017. El Cenomaniense–Turoniense de Tamajón (Guadalajara, España): contexto geológico, contenido fósil e interpretación paleoambiental. Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica 111: 67–84.
  • Barroso-Barcenilla, F., Callapez, P.M., Ferreira Soares, A., and Segura, M. 2011. Cephalopod assemblages and depositional sequences from the upper Cenomanian and lower Turonian of the Iberian Peninsula (Spain and Portugal). Journal of Iberian Geology 37: 9–28.
  • Basse, E. and Choubert, G. 1959. Les faunes d’ammonites du Cénomanien–Turonien de la partie orientale du domaine atlasique marocain et de ses annexes sahariennes. In: 20eme Congres Géologique International de Mexico, 1956. Symposium Crétace 2: 58–82.
  • Batt, R.J. 1989. Ammonite shell morphotype distribution in the Western Interior Greenhorn Sea (Cretaceous) and some paleoecological implications. Palaios 4: 32–42.
  • Batt, R.J. 1991. Sutural amplitude of ammonite shells as a paleoenvironmental indicator. Lethaia 24: 219–225.
  • Bauer, J., Kuss, J., and Steuber, T. 2002. Platform environments, microfacies and systems tracts of the Upper Cenomanian–Lower Santonian of Sinai, Egypt. Facies 47: 1–25.
  • Benavides-Cáceres, V.E. 1956. Cretaceous system in northern Peru. Bulletin of the American Museum of Natural History 108: 1–493.
  • Benyoucef, M., Meister, C., Bensalah, M., and Malti, F. Z. 2012. La plateforme préafricaine (Cénomanien supérieur–Turonien inférieur) dans la région de Béchar (Algérie): stratigraphie, paléoenvironnements et signification paléobiogéographique. Revue de Paléobiologie 31: 205–218.
  • Blainville, H.M.D. de 1825–1827. Manuel de malacologie et de conchyliologie. 664 pp. (1825), 87 pls. (1827). Levrault, Paris.
  • Blanckenhorn, M. 1900. Neues zur Geologie und Paläontologie Aegyptens. Zeitschrift der Deutschen Geologischen Gesellschaft 52: 21–47.
  • Cavin, L., Tong, H., Boudad, L., Meister, C., Piuz, A., Tabouelle, J., Aarab, M., Amiot, R., Buffetaut, E., Dyke, G., Hua, S., and Le Loeuff, J. 2010. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco. Journal of African Earth Sciences 57: 391–412.
  • Chamberlain, J.A. 1978. Permeability of the siphuncular tube of Nautilus: its geologic and paleoecologic implications. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1978 (3): 29–142.
  • Chamberlain, J.A. 1987. Locomotion of Nautilus. In: W.B. Saunders and N.H. Landman (eds.), Topics in Geobiology 6: 489–525. Plenum Press, New York.
  • Chamberlain, J.A. 1992. Cephalopod locomotor design and evolution: the constraints of jet propulsion. In: J.M.V Rayner and R.J. Wootton (eds.), Biomechanics in evolution. Society for Experimental Biology, Seminar Series 36, 57–98. Cambridge University Press, Cambridge.
  • Chamberlain, J.A. 1993. Locomotion in ancient seas: constraint and opportunity in cephalopod adaptive design. Geobios, Mémoir Spécial 15: 49–61.
  • Chamberlain, J.A. and Moore, W.A. 1982. Rupture strength and flow rate of Nautilus siphuncular tube. Paleontology 8: 408–425.
  • Charrière A., Andreu, B., Ciszak, R., Kennedy, W.J., Rossi, A., and Vila, J.-M. 1998. La transgression du Cénomanien supérieur clans la Haute Moulouya et le Moyen Atlas meridional, Maroc. Geobios 31: 551–569.
  • Choffat, P.L. 1886. Recueil d´études paléontologiques sur la Faune Crétacique du Portugal, I. 40 pp. Section des Travaux Géologiques du Portugal, Lisbonne.
  • Conrad, T.A. 1866. Observations on recent and fossil shells, with proposed new genera and species. American Journal of Conchology 2: 101–103.
  • Coquand, H. 1862. Géologie et Paléontologie de la région Sud de la province de Constatine. Mémoires de la Société d’Émulation de la Provence 2: 1–342.
  • Daniel, T.L., Helmuth, B.S., Saunders, W.B., and Ward, P.D. 1997. Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23: 470–481.
  • Debris, J.-P. 2006. Détermination pratique des nautiles Kimméridgiens et Crétacés de la région du Havre (Haute Normandie). Bulletin de la Société Géologique de Normandie et des Amis du Muséum du Havre 92: 5–18.
  • Dunstan, A.J., Ward, P.D., and Marshall, N.J. 2011. Vertical distribution and migration patterns of Nautilus pompilius. PLoS ONE 6 (2): e16311.
  • Dzik, J. 1984. Phylogeny of the Nautiloidea. Palaeontologia Polonica 45: 1–220.
  • Eck, O. 1910. Die Cephalopoden der Schweinfurth‘schen Sammlung aus der oberen Kreide Ägyptens. 43 pp. Inaugural dissertation, Philosophical Faculty, Friedrich-Wilhelms-University, Berlin.
  • Eck, O. 1914. Die Cephalopoden der Schweinfurth‘schen Sammlung aus der oberen Kreide Ägyptens. Zeitschrift der Deutschen Geologischen Gesellschaft 66: 179–216.
  • El Qot, G. 2006. Late Cretaceous macrofossils from Sinai, Egypt. Beringeria 36: 3–163.
  • Ernst, G., Niebuhr, B., Wiese, F., and Wilmsen, M. 1996. Facies development, basin dynamics, event correlation and sedimentary cycles in the Upper Cretaceous of selected areas of Germany and Spain. In: J. Reitner, F. Neuweiler, and F. Gunkel (eds.), Global and regional controls on biogenic sedimentation. II. Cretaceous Sedimentation. Research Reports. Göttinger Arbeiten zur Geologie und Paläontologie, Sonderband 3: 87–100.
  • Gottobrio, W.E. and Saunders, W.B. 2005. The clymeniid dilemma: functional implications of the dorsal siphuncle in clymeniid ammonoids. Paleobiology 31: 233–252.
  • Hallam, A. 1992. Phanerozoic Sea-level Changes. 266 pp. Columbia University Press, New York.
  • Hassan, M.A., Westermann, G.E.G., Hewitt, R.A., and Dokainish, M.A. 2002. Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology 28: 113–126.
  • Hewitt, R.A. 1988. Nautiloid shell taphonomy: interpretations based on water pressure. Palaeogeography, Palaeoclimatology, Palaeoecology 63: 15–25.
  • Hewitt, R.A. and Westermann, G.E.G. 1987. Nautilus shell architecture. In: W.B. Saunders and N.H. Landman (eds.), Topics in Geobiology 6: 435–461. Plenum Press, New York.
  • House, M.R. 1987. Geographic distribution of Nautilus shells. In: W.B. Saunders and N.H. Landman (eds.), Topics in Geobiology 6: 53–64. Plenum Press, New York.
  • Hyatt, A. 1884. Genera of fossil cephalopods. Proceedings of the Boston Society of Natural History 22: 273–338.
  • Hyatt, A. 1894. Phylogeny of an acquired characteristic. Proceedings of the American Philosophical Society 32 (for 1893): 349–647.
  • Jacobs, D.K. and Chamberlain, J.A. 1996. Buoyancy and hydrodynamics in ammonoids. In: N.H. Landmann, K. Tanabe, and R.A. Davies (eds.), Ammonoid Paleobiology. Topics in Geobiology 13: 169–224.
  • Kauffman, E.G. 2004. Mosasaur predation on Upper Cretaceous nautiloids and ammonites from the United States Pacific Coast. Palaios 19: 96–100.
  • Kelley, P.H. and Hansen, T.A. 2001. Mesozoic marine revolution. In: D.E.G. Briggs and P.R. Crowther (eds.), Palaeobiology II, 94–97. Blackwell Science, Oxford.
  • Kennedy, W.J. and Gale, A.S. 2015. Upper Albian and Cenomanian ammonites from Djebel Mrhila, Central Tunisia. Revue de Paléobiologie 34: 235–361.
  • Kennedy, W.J. and Simmons, M. 1991. Mid-Cretaceous ammonites and associated microfossils from the Central Oman Mountains. Newsletters on Stratigraphy 25: 127–154.
  • Kröger, B. 2002. On the efficiency of the buoyancy apparatus in ammonoids: Evidences from sublethal shell injuries. Lethaia 35: 61–70.
  • Kummel, B. 1956. Post-Triassic Nautiloid genera. Bulletin of the Museum of Comparative Zoology at Harvard College in Cambridge 114: 319–494.
  • Kummel, B. 1964. Nautiloidea–Nautilida. In: Moore, R.C. (ed.), Treatise on Invertebrate Paleontology, Part K, Mollusca 3, K383–K457. Geological Society of America, Boulder, and University of Kansas Press, Lawrence.
  • Kuss, J., Scheibner, C., and Gietl, R. 2000. Carbonate platform to basin transition along an upper Cretaceous to lower tertiary Syrian Arc uplift, Galala Plateaus, Eastern Desert, Egypt. GeoArabia 5: 405–424.
  • Lefranc, J.P. 1981. Études de Neolobites vibrayeanus, ammonite Cénomanienne du Sahara Algérien. 106. Congrès national des Sociétés Savantes, Perpignan, sciences fascicule 1: 155–199.
  • Lemanis, R., Zachow, S., and Hoffmann, R. 2016. Comparative cephalopod shell strength and the role of septum morphology on stress distribution. PeerJ 4: e2434.
  • Leymerie, A. 1842. Suite du mémoire sur le terrain Crétacé du département de l’Aube. Seconde partie (partie paléontologique). Mémoires de la Société géologique de France 5: 1–34.
  • Liebau, A. 1984. Grundlagen der Ökobathymetrie. Paläontologische Kursbücher 2: 149–184.
  • Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Volume 1. 824 pp. Laurentii Salvii, Holmiae.
  • Luger, P. and Gröschke, M. 1989. Late Cretaceous ammonites from the Wadi Qena area in the Egyptian Eastern Desert. Palaeontology 32: 355–407.
  • Lukeneder, A. 2015. Ammonoid habitats and life history. In: C. Klug, D., Korn, K. De Baets, I. Kruta, and R.H. Mapes (eds.), Ammonoid Paleobiology: From Anatomy to Ecology. Topics in Geobiology 43: 689–791.
  • Malchyk, O., Machalski, M., Waksmundzki, B., and Duda, M. 2017. Shell ornament, systematic position and hatching size of Epicymatoceras vaelsense (Nautilida): New insights based on specimens in mould preservation from the Upper Cretaceous of Poland. Cretaceous Research 80: 1–12.
  • Meister, C. and Abdallah, H. 2005. Précision sur les successions d’ammonites du Cénomanian–Turonien dans la région de Gafsa, Tunisie du centre-sud. Revue de Paléobiologie 24: 111–199.
  • Meister, C. and Piuz, A. 2013. Late Cenomanian–Early Turonian ammonites of the southern Tethys margin from Morocco to Oman: biostratigraphy, paleobiogeography and morphology. Cretaceous Research 44: 83–103.
  • Meister, C. and Piuz, A. 2015. Cretaceous ammonites from the Sultanate of Oman (Adam Foothills). GeoArabia 20: 17–74.
  • Meister, C. and Rhalmi, M. 2002. Quelques ammonites du Cénomanien–Turonien de la région d’Errachidia-Boudnid-Erfoud (partie méridionale du Haut Atlas Central, Maroc). Revue de Paléobiologie 21: 759–779.
  • Meister, C., Piuz, A., Cavin, L., Boudab, L., Bacchia, F., Ettachfina, E.M., and Benyoucef, M. 2017. Late Cretaceous (Cenomanian–Turonian) ammo nites from southern Morocco and south western Algeria. Arabian Journal of Geosciences 10: 1–46.
  • Mitchell, S.F. 2002. Palaeoecology of corals and rudists in mixed volcaniclastic–carbonate small-scale rhythms (Upper Cretaceous, Jamaica). Palaeogeography, Palaeoclimatology, Palaeoecology 186: 237–259.
  • Montfort, D. de 1808. Conchyliologie systématique et classification méthodique des coquilles; offrant leurs figures, leur arrangement générique, leurs descriptions caractéristiques, leur noms. Ainsi que leur synonymie en plusieurs langues, Volume 1. 409 pp. F. Schoell, Paris.
  • Nagm, E. 2009. Integrated stratigraphy, palaeontology and facies analysis of the Cenomanian–Turonian (Upper Cretaceous) Galala and Maghra el Hadida formations of the western Wadi Araba, Eastern Desert, Egypt. 213 pp. Ph.D. thesis, University of Würzburg, Würzburg.
  • Nagm, E. 2015. Stratigraphic significance of rapid faunal change across the Cenomanian–Turonian boundary in the Eastern Desert, Egypt. Cretaceous Research 52: 9–24.
  • Nagm, E. 2019. The late Cenomanian maximum flooding Neolobites bioevent: A case study from the Cretaceous of northeast Egypt. Marine and Petroleum Geology 102: 740–750.
  • Nagm, E. and Wilmsen, M. 2012. Upper Cenomanian–Turonian (Cretaceous) ammonoids from Wadi Qena, central Eastern Desert, Egypt: taxonomy, biostratigraphy and palaeobiogeographic implications. Acta Geologica Polonica 62: 63–89.
  • Nagm, E., Wilmsen, M., Aly, M., and Hewaidy, A. 2010a. Biostratigraphy of the Upper Cenomanian–Turonian (lower Upper Cretaceous) successions of the western Wadi Araba, Eastern Desert, Egypt. Newsletters on Stratigraphy 44: 17–35.
  • Nagm, E., Wilmsen, M., Aly, M., and Hewaidy, A. 2010b. Cenomanian–Turonian (Cretaceous) ammonoids from the western Wadi Araba area, Eastern Desert, Egypt. Cretaceous Research 31: 473–499.
  • Ogg, J.G. and Hinnov, L.A. 2012. Cretaceous. In: F.M. Gradstein, J.G. Ogg, M. Schmitz, and G.M. Ogg (eds.), The Geologic Time Scale 2012, Vol. 2, 793–853. Elsevier, Amsterdam.
  • Olóriz, F. and Palmqvist, P. 1995. Sutural complexity and bathymetry in ammonites: fact or artifact? Lethaia 28: 167–170.
  • Olóriz, F., Palmqvist, P., and Pérez-Claros, J. 2002. Morphostructural constraints and phylogenetic overprint on sutural frilling in Late Jurassic ammonites. Lethaia 35: 18–168.
  • d’Orbigny, A. 1840–1842. Paléontologie Française. Terrain Crétacé I, Céphalopodes. 662 pp. (1840: 1–120; 1841: 121–430; 1842: 431–662). Masson, Paris.
  • Pérez-Claros, J. 2005. Allometric and fractal exponents indicate a connection between metabolism and complex septa in ammonites. Paleobiology 31: 221–232.
  • Pervinquière, L. 1907. Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. 438 pp. Carte Géologique Tunisie, Paris.
  • Peterman, D.J., Barton, C.C., and Yacobucci, M.M. 2019. The hydrostatics of Paleozoic ectocochleate cephalopods (Nautiloidea and Endoceratoidea) with implications for modes of life and early colonization of the pelagic zone. Palaeontologia Electronica 22.2.24A: 1–29.
  • Philip, J. and Floquet, M. 2000. Late Cenomanian (94.7–93.5). In: J. Dercourt, M. Gaetani, B. Vrielynck, E. Barrier, B. Biju-Duval, M.F. Brunet, J.P. Cadet, S. Crasquin, and M. Sandulescu (eds.), Atlas Peri-Tethys Palaeogeographical Maps, 129–136. CCGM/CGMW, Paris.
  • Reyment, R.A. 2008. A review of the post-mortem dispersal of cephalopod shells. Palaeontologia Electronica 11: 11.3.12A.
  • Ritterbush, K.A. 2016. Interpreting drag consequences of ammonoid shells by comparing studies in Westermann Morphospace. Swiss Journal of Palaeontology 135: 125–138.
  • Ritterbush, K.A. and Bottjer, D.J. 2012. Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38: 424–446.
  • Ritterbush, K.A., Hoffmann, R., Lukeneder, A., and DeBaets, K. 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology 292: 229–241.
  • Robaszynski, F., Juignet, P., Gale, A.S., Amédro, F., and Hardenbol, J. 1998. Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: T. Jaquin, P. De Graciansky, and J. Hardenbol (eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. Society of Economic Paleontologists and Mineralogists, Special Publication 60: 363–385.
  • Rosenthal, E., Weinberger, G., Almogi-Labin, A., and Flexer, A. 2000. Late Cretaceous–early Palaeogene development of depositional basins in Samaria as a reflection of eastern Mediterranean tectonic evolution. Bulletin of the American Association of Petroleum Geologists 84: 997–1114.
  • Said, R. 1962. The Geology of Egypt. 377 pp. Elsevier, Amsterdam.
  • Said, R. 1990. The Geology of Egypt. 721 pp. Balkema, Rotterdam.
  • Saunders, W.B. and Landman, N.H. 1987 (eds.). Nautilus: the Biology and Paleobiology of a Living Fossil. Topics in Geobiology 6. 623 pp. Plenum Press, New York.
  • Saunders, W.B. and Ward, P.D. 1987. Ecology, distribution, and population characteristics of Nautilus. In: W.B. Saunders and N.H. Landman (eds.), Topics in Geobiology 6: 137–162.
  • Schlagintweit, O. 1912. Die Fauna des Vracon und Cenoman in Perú. Neues Jahrbuch für Geologie und Paläontologie, Beilagen-Band 33: 43–135.
  • Schlüter, C. 1872. Die Spongitarienbänke der oberen Quadraten- und unteren Mucronaten-Schichten des Münsterlandes 20. Hauptversammlung der Deutschen Geologischen Gesellschaft, September 1872: 1–38.
  • Schulze, F., Kuss, J., and Marzouk, A. 2005. Platform configuration, microfacies and cyclicities of the upper Albian to Turonian of west-central Jordan. Facies 50: 505–527.
  • Segura, M., Barroso-Barcenilla, F., Callapez, P., García-Hidalgo, J.F., and Gil-Gil, J. 2014. Depositional sequences and ammonoid assemblages in the upper Cenomanian–lower Santonian of the Iberian Peninsula (Spain and Portugal). Geologica Acta 12: 19–27.
  • Shimansky, V.N. [Šimanskij, V.N.] 1975. Cretaceous Nautiloids [in Russian]. Trudy Paleontologičeskogo Instituta Akademii Nauk SSSR 150: 1–208.
  • Spath, L.F. 1927. Revision of the Jurassic cephalopod fauna of Kachh (Cutch). Memoir of the Geological Survey of India, New Series 9 (2): 1–84.
  • Tajika, A., Morimoto, N., Wani, R., Naglik, C., and Klug, C. 2015. Intraspecific variation of phragmocone chamber volumes throughout ontogeny in the modern nautilid Nautilus and the Jurassic ammonite Normannites. PeerJ 3: e1306.
  • Teichert, K. 1964. Morphology of hard parts. In: R.C. Moore (ed.), Treatise on Invertebrate Paleontology, Part K, Mollusca 3, K13–K53. Geological Society of America, Boulder, and University of Kansas Press, Lawrence.
  • Tintant, H. and Kabamba, M. 1985. The role of the environment in the Nautilaceae. In: U. Bayer and G.M. Friedman (eds.), Sedimentary and Evolutionary Cycles: 58–66. Springer, Berlin.
  • Tsujita, C.J. and Westermann, G.E.G. 2001. Were limpets or mosasaurs responsible for the perforations in the ammonite Placenticeras? Palaeogeography, Palaeoclimatology, Palaeoecology 169: 245–270.
  • Vermeij, G.J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3: 245–258.
  • Wani, R., De Ocampo, R.S.P., Aguilar, Y.M., Zepeda, M.A., Kurihara, Y., Hagino, K., Hayashi, H., and Kase, T. 2008. First discovery of fossil Nautilus pompilius Linnaeus, 1758 (Nautilidae, Cephalopoda) from Pangasinan, northwestern Philippines. Paleontological Research 12: 89–95.
  • Ward, P.D. 1987. The Natural History of Nautilus. 267 pp. Allen and Unwin, London.
  • Ward, P.D. 1996. Ammonoid extinction. In: N.H. Landman, K. Tanabe, and R.A. Davies, (eds.), Ammonoid Paleobiology. Topics in Geobiology 13: 815–824.
  • Ward, P.D. and Signor, P.W. 1983. Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 9: 183–198.
  • Ward, P.D., Dooley, F., and Barord, G.J. 2016. Nautilus: biology, systematics, and paleobiology as viewed from 2015. Swiss Journal of Palaeontology 135: 169–185.
  • Ward, P., Greenwald, L., and Magnier, Y. 1981. The chamber formation cycle in Nautilus macromphalus. Paleobiology 7: 481–493.
  • Westermann, G.E.G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Royal Ontario Museum Life Science Contributions 78: 1–39.
  • Westermann, G.E.G. 1973. Strenght of concave septa and depth limits of fossil cephalopods. Lethaia 6: 383–403.
  • Westermann, G.E.G. 1996. Ammonoid life and habitat. In: N.H. Landman, K. Tanabe, and R.A. Davies (eds.), Ammonoid Paleobiology. Topics in Geobiology 13: 607–707.
  • Westermann, G.E.G. 1999. Life habits of nautiloids. In: E. Savazzi (ed.), Functional Morphology of the Invertebrate Skeleton, 263–298. John Wiley and Sons, Chichester.
  • Westermann, G.E.G. and Ward, P.D. 1980. Septum morphology and bathymetry in cephalopods. Paleobiology 6: 48–50.
  • Wiedmann, J. 1960. Zur Stammesgeschichte jungmesozoischer Nautiliden unter besonderer Berücksichtigung der iberischen Nautilinae d’Orb. Palaeontographica, Abteilung A 115 (Lieferung 1–6): 144–206.
  • Wiedmann, J. 1964. Le Crétacé supérieur de l’Espagne et du Portugal et ses Céphalopodes. Estudios Geologicos 20: 107–148.
  • Wiese, F. and Schulze, F. 2005. The upper Cenomanian (Cretaceous) ammonite Neolobites virbrayeanus (d’Orbigny, 1841) in the Middle East: taxonomic and palaeoecologic remarks. Cretaceous Research 26: 930–946.
  • Wilmsen, M., 2000. Late Cretaceous nautilids from northern Cantabria, Spain. Acta Geologica Polonica 50: 29–43.
  • Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research 24: 525–568.
  • Wilmsen, M. 2012. Origin and significance of Upper Cretaceous bioevents: Examples from the Cenomanian. Acta Palaeontologica Polonica 57: 759–771.
  • Wilmsen, M. 2016. Nautiliden. In: B. Niebuhr and M. Wilmsen (eds.), Kreide-Fossilien in Sachsen, Teil 2. Geologica Saxonica 62: 59–102.
  • Wilmsen, M. and Yazykova, E.A. 2003. Campanian (Late Cretaceous) nautiloids from Sakhalin, Far East Russia. Acta Palaeontologica Polonica 48: 481–490.
  • Wilmsen, M. and Nagm, E. 2012. Depositional environments and facies development of the Cenomanian–Turonian Galala and Maghra el Hadida formations of the Southern Galala Plateau (Upper Cretaceous, Eastern Desert, Egypt). Facies 58: 229–247.
  • Wilmsen, M. and Nagm, E. 2013. Sequence stratigraphy of the lower Upper Cretaceous (Upper Cenomanian–Turonian) of the Eastern Desert, Egypt. Newsletters on Stratigraphy 46: 23–46.
  • Wright, C.J. and Kennedy, W.J. 2017. The Ammonoidea of the Lower Chalk. Part 7. The Palaeontographical Society Monographs 648 (171): 461–561.
  • Yacobucci, M.M. 2018. Postmortem transport in fossil and modern shelled cephalopods. PeerJ 6: e5909.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.