PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 3 |

Tytuł artykułu

Effect of fertilization through geocompisite of nutritional status of Hosta HALCYON plants grown in containers

Treść / Zawartość

Warianty tytułu

PL
Wpływ nawożenia geokompozytem na odżywienie Funki HALCYON uprawianej w pojemnikach

Języki publikacji

EN

Abstrakty

EN
Geocomposite (GC) with hydrophilic polymer is an innovative method of superabsorbent application. The aim of the conducted research was to assess the usefulness of the geocomposite for the fertilization of Hosta with liquid fertilizer in comparison with soluble fertilizer (SF) and controlled release fertilizer (CRF). Plants were grown in containers filled with peat substrate, in a plastic tunnel and regularly feed with two doses of the fertilizers (according to N supply: 0.36 or 0.72 g·plant⁻¹). Hostas responded positively to GC application: plants were higher and wider and their fresh weight increased respectively by 15 and 22% in comparison with SF and CRF application. The yield of dry matter was also higher. Plant nutrient status was better in case of P, K and Mg, but the N leaf content was lower. Lower electrical conductivity of the substrate at the end of cultivation with GC, alongside with intensive growth of plants proved high utilization of nutrients. The experiment confirmed usefulness of geocomposite for ornamental plant fertilization.
PL
Geokompozyt (GC) z hydrofilowym polimerem jest innowacyjnym sposobem aplikacji supersorbentów. Celem prowadzonych badań było określenie przydatności geokompozytu do nawożenia funkii płynnym nawozem w porównaniu z nawozami rozpuszczalnymi (SF) i o kontrolowanym uwalnianiu składników (CRF). Rośliny uprawiano w pojemnikach na podłożu torfowym w tunelu foliowym. Funkia była nawożona dwiema dawkami nawozów (na podstawie zawartości N: 0,36 lub 0,72 g·roślina⁻¹). Rośliny pozytywnie zareagowały na zastosowanie nawożenia w formie GC: były wyższe, miały większą średnicę oraz większą świeżą masę odpowiednio o 15 i 22% w porównaniu z roślinami nawożonymi SF i CRF. Plon suchej masy w tej kombinacji był również większy. Stan odżywienia roślin uprawianych z geokompozytem był lepszy w przypadku P, K, Mg, natomiast zawartość N w liściach była mniejsza. Niższe zasolenie podłoża z GC po uprawie, w połączeniu z intensywnym wzrostem roślin, dowodzi dobrego wykorzystania składników pokarmowych przez rośliny. Badania potwierdziły przydatność GC do nawożenia roślin ozdobnych.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

3

Opis fizyczny

p.83-93,fig.,ref.

Twórcy

autor
  • Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 22a, 50-363 Wroclaw, Poland
  • Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

Bibliografia

  • Agaba, H., Orikiriza, L.J.B., Obua, J., Kabasa, J.D., Worbes, M., Huttermann, A. (2011). Hydrogel amendment to sandy soil reduces irrigation frequency and improves the biomass of Agrostis stolonifera. Agric. Sci., 2(4), 544-550.
  • Amon, D. (1949). Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. Plant Physiol.,24, 1-15.
  • Azeem, B., KuShaari, K., Man, Z.B., Basit, A., Thanh, T.H. (2014). Review on materials & methods to produce controlled release coated urea fertilizer. J. Control. Rei., 181,11-21.
  • Bai, W., Zhang, H., Liu, B., Wu, Y., Song, J. (2010). Effects of super-absorbent polymers on the physical and Chemical properties of soil following different wetting and drying cycles. Soil Use Manage., 26, 253-260.
  • Bhat, N.R., Suleiman, M.K., Al-Menaie, H., Al-Ali, E.H., AL-Mulla, L., Christopher, A., Lekha, V.S., Ali, S.I., George, P. (2009). Polyacrylamide polymer and salinity effects on water requirement of Conocarpus lancifolius and selected properties of sandy loam soil. Eur. J. Sci. Res., 25(4), 549-558.
  • Bilderback, T.E. (2001). Environmentally compatible Container plant production practices. Proc. Int. Symp. on Growing Media & Hydroponics Eds. Maloupa & Gerasopoulos. Acta Hortic., 548, 311-318.
  • Bolques, A., Rnox, G., Chappell, M., Landrum, L., Duke, E. (2011). Components of sustainable production practices for Container plant nurseries. Proc. Fla. State Hort. Soc., 124, 294-298.
  • Boatright, J.L., Balint, D.E., Mackay, W.A., Zajicek, J.M. (1997). Incorporation of a hydrophilic polymer into annual landscape beds. J. Environ. Hortic., 15(1), 37-40.
  • Cabrera, R.I. (1997). Comparative evaluation of nitrogen release pattems from controlled-release fertilizers by nitrogen leaching analysis. HortSci., 32(4), 669-673.
  • Corradini, E., de Moura, M.R., Mattoso, L.H.C. (2010). A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Exp. Polym. Lett., 4(8), 509-515.
  • De Varennes, A., Cunha-Queda, C., Qu, G. (2010). Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species. Water Air Soil Poll., 208, 91-100.
  • De Varennes, A., Torres, M.O., Conceição, E., Vasconcelos, E. (1999). Effect of polyacrylate polymers with different counter ions on the growth and minerał composition of perennial ryegrass. J. Plant Nutr., 22(1), 33-43.
  • Dorraji, S.S., Golchin, A., Ahmadi, S. (2010). The effects of hydrophilic polymer and soil salinity on com growth in sandy and loamy soils. Clean - Soil, Air, Water, 38(7), 584-591.
  • Elliott, M. (2004). Superabsorbent polymers. BASF Aktiengesellschaft, Ludwigshafen, Germany.
  • Ekebafe, L.O., Ogbeifun, D.E., Okieimen, F.E. (2011). Polymer applications in agriculture. Biokemistri, 23(2), 81-89.
  • Faithfull, N.T. (2002). Methods in agricultural Chemical analysis: a practical handbook. CAB Publishing, New York, USA.
  • Foster, W.J., Keever, G.J. (1990). Water absorption of hydrophilic polymers (hydrogels) reduced by media amendments. J. Environ. Hortic., 8(3), 113-114.
  • Ghebru, M.G., du Toit, E.S., Steyn, J.M. (2007). Water and nutrient retention by Aquasoil® and Stockosorb® polymers. S. Afr. J. Plant Soil, 24(1), 32-36.
  • Hicklenton, P.R., Caims, K.G. (1992). Solubility and application rate of controlled-release fertilizer affect growth and nutrient uptake in containerized woody landscape plants. J. Amer. Soc. Hort. Sci., 117(4), 578-583.
  • Huett, D.O., Gogel, B.J. (2000). Longevities and nitrogen, phosphorus, and potassium release pattems of polymer-coated controlled-release fertilizers at 30°C and 40°C. Commun. Soil Sci. Plan., 31(7-8), 959-973.
  • Islam, M.R., Ren, C., Zeng, Z., Jia, P., Eneji, E., Hu, Y. (2011a). Fertilizer use efficiency of drought-stressed oat (Avena sativa L.) following soil amendment with a water-saving super-absorbentpolymer. Acta Agric. Scand. B-S P., 61(8), 721-729.
  • Islam, M.R., Hu, Y.G., Mao, S.S., Mao, J.Z., Eneji, A.E., Xue, X.Z. (2011b). Effectiveness of a water-saving super-absorbent polymer in soil water conservation for com (Zea mays L.) based on eco-physiological parameters. J. Sci. Food Agric., 91(11), 1998-2005.
  • Jobin, P., Caron, J., Bemier, P.Y., Dansereau, B. (2004). Impact of two hydrophilic acrylic-based polymers on the physical properties of three substrates and the growth of Petunia x hybrida ‘Brilliant Pink’. J. Amer. Soc. Hort. Sci., 129(3), 449-457.
  • Kiatkamjomwong, S. (2007). Superabsorbent polymers and superabsorbent polymer composites. ScienceAsia, 33, Suppl. 1, 39-43.
  • Liang, R., Liu, M., Wu, L. (2007). Controlled release NPK compound fertilizer with the function of water retention. React. Funct. Polym., 67, 769-779.
  • Marschner, P. (2012). Minerał nutrition of higher plants. Academic Press, 3rd Edition, USA.
  • Martyn, W., Szot, P. (2001). Influence of superabsorbents on the physical properties of horticultural substrates. Int. Agrophys., 15, 87-94.
  • Mikkelsen, R.L. (1994). Using hydrophilic polymers to control nutrient release. Fert. Res., 38, 53-59.
  • Mouvenchery, Y.K., Jaeger, A., Aquino, A.J.A., Tunega, D., Diehl, D., Bertmer, M., Schaumann, G.E. (2013). Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time. PLoS ONE 8(6), e65359.
  • Nowosielski, O. (1974). Methods of determination of nutritional requirements (in Polish). PWRiL, 2nd Edition, Warszawa, Poland.
  • Orzeszyna, H., Garlikowski, D., Pawłowski, A. (2006). Using of geocomposite with superabsorbent synthetic polymers as water retention element in vegetative layers. Int. Agrophys., 20,201-206.
  • Sita, R.C.M., Reissmann, C.B., Marques, R., de Oliveira, E., Taffarel, A.D. (2005). Effect of polymers associated with N and K fertilizer sources on Dendrathema grandiflorum growth and K, Ca and Mg relations. Brąz. Arch. Biol. Technol., 48(3), 335-342.
  • Taylor, K.C., Halfacre, R.G. (1986). The effect of hydrophilic polymer on media water retention and nutrient availability to Ligustrum lucidum. HortSci., 21(5), 1159-1161.
  • Wang, Y.T., Boogher, C.A. (1987). Effect of a medium-incorporated hydrogel on plant growth and water use of two foliage species. J. Environ. Hort., 5(3), 125-127.
  • Wikstrom, F. (1994). A theoretical explanation of the Piper-Steenbjerg effect. Plant Celi Environ., 17(9), 1053-1060.
  • Xie, L., Liu, M., Ni, B., Zhang, X., Wang, Y. (2011). Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem. Eng. J., 167, 342-348.
  • Yang, L., Han, Y., Yang, P., Wang, C., Yang, S., Kuang, S., Yuan, H., Xiao, C. (2015). Effects of superabsorbent polymers on infiltration and evaporation of soil moisture under point source drip irrigation. Irrig. Drain., 64, 275-282.
  • Zhong, K., Lin, Z.T., Zheng, X.L., Jiang, G.B., Fang, Y.S., Mao, X.Y., Liao, Z.W. (2013). Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr. Polym., 92,1367-1376.
  • Zohuriaan-Mehr, M.J., Omidian, H., Doroudiani, S., Kabiri, K. (2010). Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci., 45, 5711-5735.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fb788beb-7390-489f-9879-a3c2bad62124
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.