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Summary 

In this paper we consider a certain class of block designs used in situations of limited 
experimental resources. We present properties of some binary partially balanced block designs. 
We prove that the proposed design is M–better than others in the binary subclass  
D(v=4w, b=6, n=3v). This result makes it possible to formulate the construction of binary block 
designs as an optimization problem, and is a response to questions from agricultural researchers.  
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1. Introduction 

Agricultural experiments are frequently field experiments involving one–
way elimination of heterogeneity. The structure and scale of the experimental 
material are an important aspect of the planning of the experiment. Many such 
experiments have to be limited in terms of the numbers of blocks and of 
experimental units in each. In this situation, incomplete block designs with at 
most six blocks are used. These are designs with a binary incidence matrix, 
mostly with blocks of equal sizes and equireplicated treatments.  



156 MARIA KOZŁOWSKA 

In this paper we describe a special construction problem for the 
arrangement of treatments on experimental units, in response to questions from 
agricultural researchers.  

2. Background  

In this section we study binary block designs where there are six blocks. 
We consider only connected block designs, with the meaning that a chain in 
such a design is a sequence of experimental units such that two consecutive 
units share either the same treatment or the same block, but not both.   

We have v treatments arranged on n=3v experimental units which are 
grouped in b=6 blocks (B1, …, B6) of the same size in the following way: 

 

B1: 1 2 … w w+1 w+2 … 2w 

B2: 1 2 … w 2w+1 2w+2 … 3w 

B3: 1 2 … w 3w+1 3w+2 … 4w 

B4: w+1 w+2 … 2w 2w+1 2w+2 … 3w 

B5: w+1 w+2 … 2w 3w+1 3w+2 … 4w 

B6: 2w+1 2w+2 … 3w 3w+1 3w+2 … 4w 
 
where 1,2, …,w, …,2w, …,3w, …,4w are numbers of treatments  
(w>1, v=4w, n=3v=12w). The above scheme of arrangement of treatments on 
experimental units defines a binary connected block design  
d*∈D(v=4w, b=6, n=3v). It is easy to see that for each pair of blocks  
w treatments are the same; w is the intersection number for all blocks. The block 
design is based on v=4w treatments (w>1) being arranged into 4 groups of  
w treatments each. Each treatment occurs in r=3 blocks, and two treatments 
belonging to the same w–dimensional group are such that they occur together in 
λ1=3 blocks and are called first associates. When two treatments belong to 
different groups they occur together in λ2=1 block and are called second 
associates.  The block design d* for w>1 is a group divisible block design. (It is 
known that when w=1 then λ1=λ2=λ and we have a balanced incomplete block 
design.) The group divisible block design was defined by Bose and Conor 
(1952). Statistical properties of this design have been discussed by many 
authors, for example in recent years by Brzeskwiniewicz and Krzyszkowska 
(2009), Bagchi and Bagchi (2001), Das (2002) and Bagchi (2004). The design  
d* has been described, for example, in theorem 7.3.1 of Caliński and Kageyama 
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(2003) and earlier in theorem 8.5.1 of Raghavarao (1971). The information 
matrix of design d* has the following form:  
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(2.1) 

where N is the incidence matrix, I x is the unit matrix of order x and 1x is the  

x–dimensional vector of ones. The matrix 'NN  is the associate matrix of the 
form 

22110
' AAANN λλ ++= r , 

where vIA =0 , )( '
1 w4 I11IA −⊗= ww , '

4
'
442 )( ww11I11A ⊗−=  and ⊗ 

denotes the Kronecker product of matrices, λ1=3 and λ2=1. The eigenvalues of 
the information matrix *dC  are γ0=0, 2γ *1 =  and 3γ *2 =  for any v and w>1, 
with multiplicities 1, 3 and (v–4), respectively. So the v–1 dimensional vector of 
non–zero eigenvalues of matrix (2.1) is denoted by ]γ..., ,γ,γ,γ,γ[ *2*2*1*1*1*d =γ , 

and the smallest non–zero eigenvalue for d*, denoted as *1γ , is equal to 2.  
 Let us now consider v treatments arranged on n=3v experimental units 

which are grouped in b=6 blocks (B1, …, B6), but in a different manner than 
above : 

 

B1: 1 2 … w 2w +1 2w+2 … 3w 

B2: 1 2 … w 2w+1 2w+2 … 3w 

B3: 1 2 … w 3w+1 3w+2 … 4w 

B4: w+1 w+2 … 2w 2w+1 2w+2 … 3w 

B5: w+1 w+2 … 2w 3w+1 3w+2 … 4w 

B6: w+1 w+2 … 2w 3w+1 3w+2 … 4w. 
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This scheme of arrangement of treatments on experimental units defines  
a binary connected block design dx∈D(v=4w, b=6, n=3v). It is easy to see that 
each treatment occurs in r=3 blocks, which are the same size k=2w. The 
information matrix of design dx has the following form:  
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(2.2) 

The eigenvalues of the information matrix xd
C  are γ0=0, 1γ

1
=x , 2γ

2
=x  

and 3γ
3

=x  for any v and w>1, with multiplicities 1, 1, 1 and (v–3), 

respectively. So the v–1 dimensional vector of non–zero eigenvalues of matrix 
(2.2) is denoted ]γ,...,γ,γ,[γ

3321d xxxxx =γ , and the smallest non–zero eigenvalue 

for dx, denoted as x1
γ , is equal to 1.  

Let us also consider a binary block design in class D(v=4w, b=6, n=3v) such 
that v1=w treatments have the maximum replication of 6. Let r=N1 be the 
treatment replication vector, k=N'1 be the block size vector, and n=r'1=k'1=3v 
be the number of experimental units, and let v=4w treatments be arranged on 
n=3v experimental units in the following way:  

 

B1: 1 2 … w … 2w … 3w … 4w 

B2: 1 2 … w … 2w … 3w … 4w 

B3: 1 2 … w       

B4: 1 2 … w       

B5: 1 2 … w       

B6: 1 2 … w.       
 
Usually, to study the properties of this block design the following information 
matrix is used: 
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where R and K denote diagonal matrices having successive components of the 
vectors r and k respectively as their diagonal elements, and K –1 denotes the 
inverse of the matrix K . Its eigenvalues are γ0=0, 2γ 01

= , and 6γ 02
=  for any v 

and w>1, with multiplicities 1, v–w and w–1, respectively. Hence the  
v–1 dimensional vector of non–zero eigenvalues of matrix (2.3) is denoted 

]γ,...,γ,γ,...,[γ 00000 2211d
=γ , and the smallest non–zero eigenvalue, denoted as 

01
γ , is equal to 2. 

3. Optimality of block designs  

The theory of optimal experimental designs is concerned with the problem 
of selecting a design which minimizes some functional of the matrix Cd over all 
possible designs in class D. This functional is called an optimality criterion. The 
commonly used criteria are called A, D and E criteria. These criteria are defined 
by functionals of the form  

1-
1-v21

1-v
1

i )},...,,(min  {       and γγγγγ ∏∑
−

=

−

=

−
1

1

1

1

,
v

i
i

i

 

respectively, where γi are the non–zero eigenvalues of matrix Cd, i=1,2,...,v–1. 
Optimality criteria are defined for connected designs, and a broad discussion of 
the optimality criteria and their history can be found in Shah and Sinha (1989, 
chapter 3). Some information about optimality of block designs can be found in 
Kozłowska (1990, 1996, 1999).  

Bagchi and Bagchi (2001) introduced the definition that a design d# is said 
to be better than another design d∈ D in the sense of majorization (M–better) if 
the vector γγγγd# is weakly majorized by the vector γγγγd, and a design d#∈ D is said to 
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be optimal in the sense of majorization (M–optimal) if it is M–better than any 
other design in D.  
Hence for any block design we can consider the optimality of the design, 
particularly when only the bottom stratum is used. We recall some definitions 
(Marshall and Olkin, 1979).  

For any row vector x = [x1, x2, …, xv]∈Rv for which x1 indicates the smallest 
element in x, x2 indicates the second–smallest element, and so on, we have :  

 
Definition 1. The vector x is said to be majorized by the vector y, denoted as  

yx p , if for k=1, 2, …,v–1 

∑ ∑≥
= =

k
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k

1i i
ii yx    and   ∑ ∑=

= =

v
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i
ii yx

1 1
. 

Majorization is a partial ordering among vectors, which applies to vectors 
having the same sum. The above conditions may be formulated as follows:  
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Definition 2. The vector x is said to be weakly majorized by the vector y, 

denoted as yx w
p , if for k=1, 2, …,v–1 

 ∑ ∑≥
= =

k

1

k

1i i
ii yx .  (3.1) 

Motivated by the above definition we recall (see Bagchi and Bagchi, 2001) the 
following.   
 
Definition 3. A design d# is said to be better than another design d∈ D in the 

sense of majorization (M–better) if dd# γγ
w

p . 
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4. M–better block designs  

It can be shown that if d# is M–better than d then d# is better than d with respect 
to all criteria of Type I (see Bagchi and Bagchi, 2001). In particular, it can be 
shown that it implies E, A and D–optimality. 
 
Theorem. A block design d* is M–better than dx and d0 in the class  
D(v=4w, b=6, n=3v). 
 
Proof.  The block designs d*, dx and d0 described in section 2 are connected. The 
property for d* is implied for example by the fact that the number of blocks in 
which any two treatments being first or second associates occur together is not 
equal to zero; we have λ1=3 and λ2=1.  

Let us consider whether there is a balanced incomplete block design. For 
parameters v=4w, b=6 and n=3v we know that there exists a balanced 
incomplete block design do if and only if for some positive scalar s the matrix 

''oo
o

1
vvs

k
11NN −  is a diagonal matrix, where ko=v/2=2w (Baksalary et al. 

1980). Because n=3v, hence ro=3. It is easy to see that for w>1 and any v, the 
value of 3(v–2)/2(v–1) is not a integer. Hence in the binary class 
 D(v=4w, b=6, n=3v) a balanced incomplete block design does not exist.      

Consider now the structure of designs d*, dx and d0. For the information 
matrices *dC , xd

C  and 0d
C  we have v–1 dimensional vectors of non–zero 

eigenvalues of the forms, [ ]3,,3,2,2,2 K=∗d
γ , [ ]3,,3,2,1

d
K=xγ , and 

[ ]6,,6,2,,2 KK=0d
γ , and tr( *dC )=tr( xd

C )=tr( 0d
C )=6(2w–1). It is easy to see 

that x
w

dd
γγ p∗ , which means that the design d* is M–better than the design dx. 

Let us consider the relation between vectors ∗d
γ  and 0d

γ . Because w>1, for 

k=1, 2, 3 inequality (3.1) holds. Since 0dd
γγ

w
p∗ , then the design d* is  

M–better than the design d0. The theorem holds.                                                 �  

5. Example 

Let w=2 and d2
*, d2

x, d2
0∈D(v=8, b=6, n=24) be a binary block design with an 

incidence matrix in the following form: 
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and have vectors of eigenvalues [ ]3,3,3,3,2,2,2=∗d
γ , [ ]3,3,3,3,3,2,1

d
=xγ , 

[ ]6,2,2,2,2,2,2=0d
γ , respectively. It is easy to see that x

w
dd
γγ p∗  and  
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0dd
γγ

w
p∗ . Hence design d* is M–better than design dx and is M–better than 

design d0. 

*The project is supported by National Center for Science contract 
no.  7350/B/P01/2011/40. 
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