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Summary

In this paper we consider a certain class of bldekigns used in situations of limited
experimental resources. We present properties mesoinary partially balanced block designs.
We prove that the proposed design is M-better tlwners in the binary subclass
D(v=4w, b=6, n=3v). This result makes it possible to formulate tbastruction of binary block
designs as an optimization problem, and is a resptquestions from agricultural researchers.
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1. Introduction

Agricultural experiments are frequently field expents involving one—
way elimination of heterogeneity. The structure aodle of the experimental
material are an important aspect of the planninthefexperiment. Many such
experiments have to be limited in terms of the nersbof blocks and of
experimental units in each. In this situation, imptete block designs with at
most six blocks are used. These are designs withhay incidence matrix,
mostly with blocks of equal sizes and equirepliddteatments.
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In this paper we describe a special constructiooblpm for the
arrangement of treatments on experimental unitsesponse to questions from
agricultural researchers.

2. Background

In this section we study binary block designs whiiere are six blocks.
We consider only connected block designs, with rtteaning that a chain in
such a design is a sequence of experimental undls that two consecutive
units share either the same treatment or the séouk, bbut not both.

We havev treatments arranged am=3v experimental units which are
grouped irb=6 blocks (B, ..., Bs) of the same size in the following way:

Bi: 1 2 w o owl o w+2 ... 2w
B.: 1 2 w 2w+l 2w+2 ... 3w
Ba: 1 2 w 3w+l 3w+2 ... 4w
Bs w+l w+2 ... 2w 2w+l 2w+2 ... 3w
Bs: w+l w+H2 2w 3w+l 3w+2 ... 4w
Bs: 2w+l 2w+2 ... 3w 3w+l 3w+2 ... 4w

where 1,2, ..w, ....,2w, ...,3w, ...,4w are numbers of treatments
(W>1, v=4w, n=3v=12w). The above scheme of arrangement of treatments on
experimental units defines a binary connected bloattesign
d'OD(v=4w, b=6, n=3v). It is easy to see that for each pair of blocks
w treatments are the samejs the intersection number for all blocks. Thecklo
design is based ow=4w treatments W>1) being arranged into 4 groups of
w treatments each. Each treatment occurs=i blocks, and two treatments
belonging to the sam&—dimensional group are such that they occur togéthe
A1=3 blocks and are called first associates. When tiwatments belong to
different groups they occur together h=1 block and are called second
associates. The block designfdr w>1 is a group divisible block design. (It is
known that whemw=1 thenA;=1,=4 and we have a balanced incomplete block
design.) The group divisible block design was dmdirby Bose and Conor
(1952). Statistical properties of this design hdeen discussed by many
authors, for example in recent years by Brzeskwiite and Krzyszkowska
(2009), Bagchi and Bagchi (2001), Das (2002) andcBa(2004). The design
d has been described, for example, in theorem 8f3Calinski and Kageyama
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(2003) and earlier in theorem 8.5.1 of RaghavarE@/1). The information
matrix of design dhas the following form:

C, =3, - NN'=

\

2w
3l -231W1'W -211W1'W -211W1'W -211W1'W
W W W W
2.1
L TP TR Sy TR IPTERN B
— 2w 2w 2w 2w ,
T S T D I (R I
2w 2w 2w 2w
S T T N T Ry
2w 2w 2w 2w

whereN is the incidence matriX, is the unit matrix of order x antl is the

x—dimensional vector of ones. The matii\ is the associate matrix of the
form

NN =rAg+AA; + LA,

where A, =1, A, =I,0(@,.,-1,), A,=@,1,-1,)01,1, andO
denotes the Kronecker product of matricés;3 andA,=1. The eigenvalues of
the information matrixC,. areyo,=0, v,» =2 and y,. = 3for anyv andw>1,
with multiplicities 1, 3 and-4), respectively. So the-1 dimensional vector of
non—zero eigenvalues of matrix (2idenoted byy . = [y, Yirs Yors Yor soes¥Vor 4
and the smallest non—zero eigenvalue fodenoted ag,. , is equal to 2.

Let us now considev treatments arranged am3v experimental units
which are grouped ith=6 blocks (B, ..., Bs), but in a different manner than
above :

B: 1 2 w 2w+l 2w+2 3w
B 1 2 w o 2w+l 2w+2 ... 3w
By 1 2 w 3w+l 3w+2 4w
By w+l w+2 2w 2w+l 2w+2 3w
Bs: w+l w+2 2w 3w+l 3w+2 ... 4w
Be: w+l w+2 2w 3w+l 3w+2 ... 4w,
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This scheme of arrangement of treatments on expetah units defines
a binary connected block desigiiid(v=4w, b=6, n=3v). It is easy to see that
each treatment occurs i3 blocks, which are the same sike2w. The
information matrix of design*dchas the following form:

1

Cdx =3, -—NN =
2w
3l —zilwl'w 0, NESEY —zilwl'w
W w W
3 . l . 1 . (22)
0, 3, -——11, -—1,1, -—1,1,
— 2w 2w w
1 1W1'W 1 1Wl'W 3, - 3 1W1'W Oy
w 2w 2w
1 1W1'W 1 1Wl'W O 3, - 3 1W1'W
2w w 2w

The eigenvalues of the information matitx, arey,=0, y, =1, v, =2
and y, =3 for any v andw>1, with multiplicites 1, 1, 1 andv{3),

respectively. So thg—1 dimensional vector of non-zero eigenvalues dfirma
(2.2)is denotedy . =[v,, Vs Vg Y4 | and the smallest non—zero eigenvalue

for &, denoted ag ., is equal to 1.

Let us also consider a binary block design in cixss4w, b=6, n=3v) such
that vy=w treatments have the maximum replication of 6. telN1 be the
treatment replication vectok=N'1 be the block size vector, amer'l=k'1=3v
be the number of experimental units, andvedw treatments be arranged on
n=3v experimental units in the following way:

Bi:
B,:
Ba:
B.:
Bs:
Bs:

2w ... 3w ... 4w
2w ... 3w ... 4w

L i T
N N N N N DN
£ s s s s =

Usually, to study the properties of this block desthe following information
matrix is used:
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C,=R-NK?N'=

I L I T 1 I
2w 2w 2w 2w
R R TR U T i1 ] @3
— 2w 2w 2w 2w ’
N R B T N [ R
2w 2w 2w 2w
N R TR TR 1)
2w 2w 2w 2w

whereR andK denote diagonal matrices having successive compemérihe
vectorsr and k respectively as their diagonal elements, &1d denotes the
inverse of the matriX. Its eigenvalues arg=0, v, = 2, andy,, = 6for anyv

and w>1, with multiplicities 1, vw andw-1, respectively. Hence the
v—1 dimensional vector of non-zero eigenvalues ofrimg2.3) is denoted

Yy =[Vps¥01¥V0050¥ 0], @nd the smallest non-zero eigenvalue, denoted as
Y0, IS equal to 2.

3. Optimality of block designs

The theory of optimal experimental designs is comeg with the problem
of selecting a design which minimizes some funeti@f the matrixC4 over all
possible designs in clas This functional is called an optimality criteriohhe
commonly used criteria are called A, D and E dateFhese criteria are defined
by functionals of the form

v-1

V-1
2V [Tt and {min(y,, s, ¥,0)}
Z

1=1

respectively, wherg; are the non—zero eigenvalues of ma@ix i=1,2,...,v—1.
Optimality criteria are defined for connected desigand a broad discussion of
the optimality criteria and their history can baufid in Shah and Sinha (1989,
chapter 3). Some information about optimality afdi designs can be found in
Koztowska (1990, 1996, 1999).

Bagchi and Bagchi (2001) introduced the definitibat a designis said
to be better than another design [@ in the sense of majorization (M—better) if
the vectolyy, is weakly majorized by the vectgy, and a design@ D is said to
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be optimal in the sense of majorization (M—optim&l} is M—better than any
other design iD.
Hence for any block design we can consider thenwgliiy of the design,
particularly when only the bottom stratum is usétk recall some definitions
(Marshall and Olkin, 1979).

For any row vectox = [Xy, X, ..., X]OR" for whichx; indicates the smallest
element inx, x, indicates the second—smallest element, and se®have :

Definition 1. The vectorx is said to be majorized by the vectgrdenoted as
X=<y,iffork=1, 2, ...v~1

\ \
Yx2Xy and Y =3V
i=1 i=1 i=1 i=1

Majorization is a partial ordering among vectordhich applies to vectors
having the same sum. The above conditions mayrioeufated as follows:

k k \ \
Y Xys1-i S X Yyaami - fork=1,2, .y and Do x =Dy, .
i=1 i=1 i=1 i=1

Definition 2. The vectorx is said to be weakly majorized by the vecyor
denoted ax <" vy, if for k=1, 2, ...y~1

PEEIR'S (3.1)
Motivated by the above definition we recall (segg@d and Bagchi, 2001) the
following.

Definition 3. A design d is said to be better than another desighDdin the
sense of majorization (M—better)*’ffd# <" Y4
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4. M—better block designs

It can be shown that if‘ds M—better than ¢hen d is better than avith respect
to all criteria of Type | (see Bagchi and Bagchi02). In particular, it can be
shown that it implies E, A and D—optimality.

Theorem. A block design d is M-better than dand d in the class
D(v=4w, b=6, n=3v).

Proof. The block designs*pldX and d described in section 2 are connected. The
property for d is implied for example by the fact that the numbgblocks in
which any two treatments being first or second eisses occur together is not
equal to zero; we havh=3 and/A,=1.

Let us consider whether there is a balanced incetmgilock design. For
parametersv=4w, b=6 and n=3v we know that there exists a balanced
incomplete block design®df and only if for some positive scalarthe matrix
k—loNoN0 -sl,1, is a diagonal matrix, wherk’=v/2=2w (Baksalary et al.
1980). Because=3v, hencer®=3. It is easy to see that far1 and any, the
value of 3¢-2)/24-1) is not a integer. Hence in the binary class
D(v=4w, b=6, n=3v) a balanced incomplete block design does not.exist

Consider now the structure of designs df and d. For the information

matrices Cy, Cdx and CdO we havev—1 dimensional vectors of non-zero
eigenvalues of the forms,y g =[2223...3], 7 =[123...3], and
Yo = [2,...,26,...6],and trCyq )=tr(C . )=tr(C , )=6(2w-1). It is easy to see
that y o <" v, which means that the designigl M—better than the desigi. d
Let us consider the relation between vectprs and y ,. Becausen>1, for
k=1, 2, 3 inequality (3.1) holds. Sincg <" ' then the design dis
M-better than the desigf.d'he theorem holds.

5. Example

Letw=2 and d, &, d.’OD(v=8, b=6,n=24) be a binary block design with an
incidence matrix in the following form:
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111000
111000
000111

11010 0/
110100
001011

001011

d,*

111000
111000
100110

010101/

010101

001011

001011

dy,’

111111

111111

110000
110000
11000 0}
110000
110000
110000

d,’

The corresponding information matrices are posiseei—definite with rank

7. The information matrices have the forms

v-1=

-3 -1 -1 -1 -1 -1 -1

9

9
-3

-1 -1 -1 -1 -1 -1

9

1/-1 -1 -3 9

-3 -1 -1 -1 -1

-1 -1

-3 -1 -1y

-1 -1 -1 -1 -3 9

-1 -1 -1 -1
-1 -1 -1 -1 -1 -1 9

-1 -1 -1 -1 9

-1 -1

-3

-1 -1 -1 -1 -1 -1 -3 9

T4

d 2*

C

5 -9 -1 -1 -1 -1 -1 -1

-9 15 -1 -1 -1 -1 -1 -1

-1 -1 7
1]-1 -1 -1 7

-1 -1 -1 -1 -1

-1 -1 -1f

-1 -1 -1 -1
-1 -1 -1 -1 -1 7

-1 -1 -1 -1 7

-1 -1

-1

-1 -1 -1 -1 -1 -1 7

-1 -1 -1-1-1-1-117

o 4

, C

-2 -2 -1 -1

0

0
-3 -1 -1 -2 -2

0
0

-3
9
9
-3 9

0

0
4/-2 -2 -1 -3 9

9

-2 -2 -1 -1

0
1 0

0

0
0

-3 -1 -2 -2
-3

-2 -2 -1 -1 -3 9
-1 -1 -2 -2 0
-1 -1 -2 -2 0

0
0

9

-3

dzx

C

[ 1233333,

[ 2222226], respectively. It is easy to see thato <"y, and

[ 2223333], 7,

and have vectors of eigenvalue,sdg
140
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Y0 <" Yo Hence design ds M—better than design énd is M—better than
design 4.

*The project is supported by National Center foriefice contract
no. 7350/B/P01/2011/40.
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