PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

LAMP3 plays an oncogenic role in osteosarcoma cells partially by inhibiting TP53

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Osteosarcoma (OS) is a common malignant tumor that predominantly occurs in adolescents. Its most common metastasis is to the lungs. As shown in our earlier study, lysosome-associated membrane glycoprotein 3 (LAMP3) is highly upregulated in metastatic OS. However, its role in the regulation of OS cell viability and apoptosis remains unknown. Methods: We knocked down and overexpressed LAMP3 in OS cells and assessed the cell viability and apoptosis. Then, we investigated the expression of apoptosisassociated genes to identify the downstream gene(s) of LAMP3. Results: Knockdown of LAMP3 significantly inhibited OS cell viability and promoted apoptosis. TP53, which is involved in the apoptosis pathway, was found to be highly upregulated after knockdown of LAMP3. Overexpression of LAMP3 significantly increased cell viability and abrogated apoptosis. Importantly, subsequent knockdown of TP53 partially suppressed the increased OS cell apoptosis induced by the inhibition of LAMP3, suggesting that TP53 is a key functional downstream gene of LAMP3. Conclusions: Our findings suggest that LAMP3 promotes OS cell viability and survival by regulating TP53 expression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-11,fig.,ref.

Twórcy

autor
  • Department of Bone Traumatology, Yantaishan Hospital, Yantai 264000, Shandong Province, People’s Republic of China
autor
  • Department of Bone Traumatology, Yantaishan Hospital, Yantai 264000, Shandong Province, People’s Republic of China
autor
  • Department of Bone Traumatology, Yantaishan Hospital, Yantai 264000, Shandong Province, People’s Republic of China
autor
  • Department of Bone Traumatology, Yantaishan Hospital, Yantai 264000, Shandong Province, People’s Republic of China
autor
  • Department of Bone Traumatology, Yantai Hospital of Traditional Chinese Medicine, Yantai 264000, Shandong Province, People’s Republic of China

Bibliografia

  • 1. Gill J, Ahluwalia MK, Geller D, Gorlick R. New targets and approaches in osteosarcoma. Pharmacol Ther. 2013; 137(1):89–99.
  • 2. Abarrategi A, Tornin J, Martinez-Cruzado L, Hamilton A, Martinez-Campos E, Rodrigo JP, et al. Osteosarcoma: cellsof-origin, Cancer stem cells, and targeted therapies. Stem Cells Int. 2016;2016:3631764.
  • 3. Osborne TS, Khanna C. A review of the association between osteosarcoma metastasis and protein translation. J Comp Pathol. 2012;146(2–3):132–42.
  • 4. Jackson TM, Bittman M, Granowetter L. Pediatric malignant bone tumors: a review and update on current challenges, and emerging drug targets. Curr Probl Pediatr Adolesc Health Care. 2016;46(7):213–28.
  • 5. Wang Z, Li B, Ren Y, Ye Z. T-cell-based immunotherapy for osteosarcoma: challenges and opportunities. Front Immunol. 2016;7:353.
  • 6. Saeter G, Hoie J, Stenwig AE, Johansson AK, Hannisdal E, Solheim OP. Systemic relapse of patients with osteogenic sarcoma. Prognostic factors for long term survival. Cancer. 1995;75(5):1084–93.
  • 7. De AHC, Busam K, Salob S. Cutaneous metastasis of osteosarcoma. J Am Acad Dermatol. 2003;49:457–60.
  • 8. Gok Durnali A, Paksoy Turkoz F, Ardic Yukruk F, Tokluoglu S, Yazici OK, Demirci A, et al. Outcomes of adolescent and adult patients with lung metastatic osteosarcoma and comparison of synchronous and Metachronous lung metastatic groups. PLoS One. 2016;11(5):e0152621.
  • 9. Meazza C, Scanagatta P. Metastatic osteosarcoma: a challenging multidisciplinary treatment. Expert Rev Anticancer Ther. 2016;16(5):543–56.
  • 10. Shaikh AB, Li F, Li M, He B, He X, Chen G, et al. Present advances and future perspectives of molecular targeted therapy for osteosarcoma. Int J Mol Sci. 2016;17(4):506.
  • 11. Maximov VV, Aqeilan RI. Genetic factors conferring metastasis in osteosarcoma. Future Oncol. 2016;12(13):1623–44.
  • 12. Kanao H, Enomoto T, Kimura T, Fujita M, Nakashima R, Ueda Y, et al. Overexpression of LAMP3/TSC403/DC-LAMP promotes metastasis in uterine cervical cancer. Cancer Res. 2005;65(19):8640–5.
  • 13. Nagelkerke A, Bussink J, Mujcic H, Wouters BG, Lehmann S, Sweep FC, et al. Hypoxia stimulates migration of breast cancer cells via the PERK/ATF4/LAMP3-arm of the unfolded protein response. Breast Cancer Res. 2013;15(1):R2.
  • 14. Nagelkerke A, Mujcic H, Bussink J, Wouters BG, van Laarhoven HW, Sweep FC, et al. Hypoxic regulation and prognostic value of LAMP3 expression in breast cancer. Cancer. 2011;117(16):3670–81.
  • 15. Liao X, Chen Y, Liu D, Li F, Li X, Jia W. High expression of LAMP3 is a novel biomarker of poor prognosis in patients with esophageal squamous cell carcinoma. Int J Mol Sci. 2015;16(8):17655–67.
  • 16. Liu K, He Q, Liao G, Han J. Identification of critical genes and gene interaction networks that mediate osteosarcoma metastasis to the lungs. Exp Ther Med. 2015;10(5):1796–806.
  • 17. Papiol S, Arias B, Barrantes-Vidal N, Guitart M, Salgado P, Catalan R, et al. Analysis of polymorphisms at the tumor suppressor gene p53 (TP53) in contributing to the risk for schizophrenia and its associated neurocognitive deficits. Neurosci Lett. 2004;363(1):78–80.
  • 18. Li J, Yang L, Gaur S, Zhang K, Wu X, Yuan YC, et al. Mutants TP53 p.R273H and p.R273C but not p.R273G enhance Cancer cell malignancy. Hum Mutat. 2014;35(5):575–84.
  • 19. Chen Z, Guo J, Zhang K, Guo Y. TP53 mutations and survival in osteosarcoma patients: a meta-analysis of published data. Dis Markers. 2016;2016:4639575.
  • 20. Poos K, Smida J, Nathrath M, Maugg D, Baumhoer D, Neumann A, et al. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database (Oxford). 2014(12):2159–60.
  • 21. Ru J-Y, Cong Y, Kang W-B, Yu L, Tin Guo ZJ-N. Polymorphisms in TP53 are associated with risk and survival of osteosarcoma in a Chinese population. Int J Clin Exp Pathol. 2015;8(3):3198–203.
  • 22. Bisio A, Zamborszky J, Zaccara S, Lion M, Tebaldi T, Sharma V, et al. Cooperative interactions between p53 and NFkappaB enhance cell plasticity. Oncotarget. 2014;5(23):12111–25.
  • 23. Ke Y, Tang H, Ye C, Lei CT, Wang YM, Su H, et al. Role and Association of Inflammatory and Apoptotic Caspases in renal Tubulointerstitial fibrosis. Kidney Blood Press Res. 2016;41(5):643–53.
  • 24. Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506.
  • 25. Dias SS, Milne DM, Meek DW. C-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF. Oncogene. 2006;25(50):6666–71.
  • 26. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M, et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature. 1999;399(6738):806–9.
  • 27. Sionov RV, Coen S, Goldberg Z, Berger M, Bercovich B, Ben-Neriah Y, et al. c-Abl regulates p53 levels under normal and stress conditions by preventing its nuclear export and ubiquitination. Mol Cell Biol. 2001;21(17):5869–78.
  • 28. Tang W, Xue R, Weng S, Wu J, Fang Y, Wang Y, et al. BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation. Int J Cancer. 2015;136(6):E475–87.
  • 29. Yang J, Li S, Wang B, Wu Y, Chen Z, Lv M, et al. Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer. Tumour Biol. 2016;37(9):11645–55.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-fa343292-742e-49fd-b291-8f5791cf6c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.