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Employing empirical mode decomposition
to determine solar radiation intensity curve
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Summary. The paper presents an application of the empirical
mode decomposition to filtering of the fast changing compo-
nents of the solar radiation curve. Results of the measurement
of the solar irradiation for a few typical days are presented. The
measurements were taken with a frequency of one sample per
second, which is a high value as for solar radiation. Then the
data were resampled with lower sampling frequencies, directly
and after eliminating fast changing components with the use
of empirical mode decomposition. For each case a daily solar
energy was calculated.
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INTRODUCTION

Since the energy crisis in 1970’s a constant growth of
photovoltaic power production has been observed [6, 12,
16]. One of the areas of solar energy application is agricul-
ture [13, 17]. This kind of energy is sometimes considered
as “agro-energy” [14].

The solar radiation, depending on the weather conditions
on a particular day, may have various levels of variability.
On a cloudless day or when the sky is covered with even-
ly distributed cloud layer, the insolation changes slowly
according to the earth rotation. But on a windy day when
the sky is covered with small clouds (for example cumulus
clouds), the radiation changes very quickly.

Due to the shape of the current — voltage curve of the
photovoltaic (PV) panels, the efficiency of the set PV gen-
erator — electrical load depends on how the load matches
the source. In systems with battery, instantaneous values of
the solar insolation are not that important — presence of the
battery stabilizes the working point of the generator. A dif-
ferent situation, due to aforementioned problem of matching
between generator and load, occurs in case of a PV island
system without battery. It is of special importance in case

of applications in agriculture, where this kind of PV system
may be employed.

Therefore, when analyzing the operation of systems
powered by photovoltaic generators, it often happens
that in addition to the sum of energy in a given day the
calculations are performed using the data from measure-
ments of the instantaneous values of radiation intensity
(as in [15]). The highest accuracy is achieved by using
high sampling frequencies, but such an approach gener-
ates huge amounts of data which in case of long lasting
measurements can be inconvenient because of the storage
space required and CPU usage when this data is used in
computer simulations. The solution is to properly choose
the sampling frequency, however the sampling points are
chosen randomly and it may happen that that the sample
will be taken in a moment which is not representative for
a given period, for example in a temporary, short moment
of cloudiness.

An alternative approach is to acquire the data with high
frequency, process it in order to eliminate (average) the high
volatility and then to resample it with lower frequency for
data archiving.

The paper presents application of Empirical Mode De-
composition (EMD) to filter fast changing components of
solar radiation curve.

EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition (EMD) is a novel meth-
od which can be applied to any complicated data set in
order to decompose it into a finite number of intrinsic mode
functions. It is applicable to non-linear and non-stationary
processes [1, 4, 5].

According to Huang [8] the decomposition is made on
an assumption that any data consists of different simple in-
trinsic modes of oscillations. Each of the oscillatory modes
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is represented by an intrinsic mode function (IMF) with the

following definition [7]:

1. in the whole data set, the number of extrema and the
number of zero crossings must either be equal or differ
at most by one;
and

2. atany point, the mean value of the envelope defined by
the local maxima and the envelope defined by the local
minima is zero.

An integral part of the EMD procedure is the sifting
process. It can be described by the following steps, assuming
that x(7) is the source data:

1. Find all the local extrema (minima and maxima) of x(?),

2. Interpolate the extrema with a cubic spline: the maxima
will create the upper envelope eup_n(t), the minima will
create the lower envelope elo_n(?),

3. calculate the mean value line which lies between the
upper and lower envelope according to the following
equation:

mn — eupin (t);_elnn(t)’ (1)

4. calculate the residue /n:
h,=x(t)-m,, @)

5. the steps 1 to 4 are repeated treating /n as the input data
until a stoppage criteria is met.
There are two approaches to the stoppage criteria. One
is to calculate normalized squared difference between two
successive sifting iterations » and n-1 [8]:
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and continue the iterations until the SD# is small enough.
This criterium, however, does not guarantee that the function
will have the same number of zero-crossings and extrema,
even if the value of SDn is lower than a given threshold value.

Another stoppage criterium proposed in [9] is based on
the fact whether the signal obtained in the last iteration has
the same number of zero-crossings and extrema. With this
criteria, the sifting process will stop only after S consecutive
times when the number of extrema and zero-crossings differ
at most by one. The value of S proposed by Huang et al. is
between 4 and 8 for optimal sifting.

If the stopping criteria is met the /#n will be the first
IMF which represents the fastest oscillating component.
Subtracting x(7) and IMF'] gives the residue r/:

r =x(t)—IMF,, 4

rl contains longer oscillations and is treated as input
data to the sifting process. In this manner the following
IMFs are computed until /MFn or rn becomes smaller
than a predefined value or when rn becomes a monotonic
function.

Considering equation (4) and iterative nature of the pro-
cedure we may write that:

x(t) = ZnZIWn +r,. (5)

J=1

The equation (5) reflects the decomposition process of
the given signal x(7) into a series of » IMFs and the residue.
Each higher IMF represents longer oscillating component
of x(f). The procedure is illustrated on figure 1.

As the intrinsic mode functions of various orders repre-
sent different levels of oscillations, eliminating the compo-
nents with shorter oscillations can be used to filter-out the
fast changing components of a given signal.

One big advantage of decomposing the signal using the
empirical mode decomposition is that there is no need to
decide apriori which function will be used to represent the
signal. In contrast, in traditional Fourier transform a sinusoi-
dal function is assumed and in wavelet transform the mother
function needs to be chosen prior to the analysis.

Several authors have addressed the usage of the EMD in
solar radiation analysis [11, 18, 19, 20]. None of them however
uses the EMD to filter solar radiation data. Some attempts are
made to employ this procedure to filter other kinds of signals.
Fleureau and others [5] use a modified version of EMD to filter
ElectroEncephaloGraphic(EEG) sleep recording.
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Fig. 1. Example of a sifting process for a simulated signal.
a) original signal (solid line), upper and lower envelopes with
mean line (dotted lines), b) result of the first iteration of the
sifting, ¢) result of the 10th iteration of the sifting

DATA, METHODS AND TOOLS

The short-circuit current of a photovoltaic cell is direct-
ly proportional to insolation [10]. This fact has been used
to measure the solar radiation intensity on a PV module
plane. The diagram of the measurement circuit is presented
on Fig. 2. The sampling frequency was 1 sample per sec-
ond, which is a high value for solar radiation measures. The
measurement was made with help of an application created



EMPLOYING EMPIRICAL MODE DECOMPOSITION

in a LabView programming environment which is suitable
for measurements both in real and simulated circuits [2, 3].
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Fig. 2. Diagram of the circuit for solar insolation measurement

The next step was to obtain two types of signals: 1) a sig-
nal created by resampling of the original signal with lower
frequency, 2) a signal created after filtering the fast-changing
components of the originally measured signal and resam-
pling it with the same frequency as the first signal. These
steps were performed by a script executed in the GNU Oc-
tave programming environment [4]. The script was also cal-
culating the daily amount of solar energy by using a signal
acquired with frequency of one sample per second and the
two types of signals described previously. Also the absolute
and relative errors of daily energy estimation were calculated
with an assumption that the original signal is error-free.

The filtering consists of the following steps:

1. Decompose the original signal into set of IMFs,
2. Reconstruct the signal eliminating the IMFs representing
faster oscillations.

As a result a new signal is obtained in which the rapid
changes of the solar irradiation are removed.

RESULTS

The analyzed data was solar insolation curve registered by
the author for selected days of April 2010. Figure 3 presents
the instantaneous power of the solar radiation on a PV module
plane. On days A and B we can see many rapid changes of
the insolation. Day C has significantly less fast components.

The signal was decomposed into 20 intrinsic mode func-
tions plus residue. The filtering was done by reconstructing
the signal using higher level IMFs — the IMFs representing
faster oscillations were removed. The calculations were
done for all the sequences of the IMFs, eliminating the
lowest functions gradually (2-20 plus residue, 3-20 plus
residue and so on). The results are presented on a 3D chart
(Figures 4-6). Additionally, 2D graphs are presented for
selected sequences of reconstructed signal (Figures 7-9).
For convenience, the residue will be referred as 21st IMF
on the charts. On the 3D charts, the presented IMF value
is the first IMF included in the signal reconstruction, for
example 5 means that the signal is reconstructed from the
5th IMF and higher plus residue.
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Fig. 3. Solar insolation curve on selected days of April 2010
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Fig. 4. 3D chart illustrating influence of the IMF components
included in the signal reconstruction on the relative error for
selected sampling intervals for day A

CONCLUSIONS

The results show that when applying shorter sampling
intervals (higher sampling frequency) the error of calculating
the daily energy is usually less. There are, however, cases
with longer sampling intervals (like 600 and 900 s), in which
the relative error is lesser, compared to longer intervals. The
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Fig. 5. 3D chart illustrating influence of the IMF components
included in the signal reconstruction on the relative error for
selected sampling intervals for day B
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Fig. 6. 3D chart illustrating influence of the IMF components
included in the signal reconstruction on the relative error for
selected sampling intervals for day C

accuracy of daily energy estimation depends also on the
intensity of the irradiation oscillations.

Application of the proposed filtration allowed for an
increase of the measurement accuracy. In most cases the
error after filtration of the fast-oscillating components is sig-
nificantly lower than without the filtration, in some cases it
is similar. The results show that we should not eliminate too
many IMFs —not more than 10 fast oscillating components.
Otherwise, the results may become unstable — producing
a generally random error.

The relative error values, even without the filtering,
are relatively small and not greater than 6 % and if sam-
pling intervals not greater than 3 minutes would be used
— not greater than 3,5 %. Nevertheless eliminating faster
oscillations with the described procedure decreases the
error further.

Applying sampling intervals less than 60 s, even with-
out signal filtering allows for high measurement accuracy.
In cases when, due to the amount of the acquired data
and calculations performed, it is necessary to use longer
sampling intervals it is advisable to perform the meas-
urement with higher frequency, then to remove faster
oscillations with the presented method and, before ar-
chiving, resample the signal with lower frequency. This
will allow for higher accuracy of calculations made using
the prepared data.
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Fig. 8. llustration of the influence of the IMF components in-
cluded in the signal reconstruction on the relative error for se-
lected sampling intervals for day B
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Fig. 9. Illustration of the influence of the IMF components in-
cluded in the signal reconstruction on the relative error for se-
lected sampling intervals for day C
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ZASTOSOWANIE EMPIRYCZNEJ DEKOMPOZYCJI
MODOW DO WYZNACZANIA KRZYWEJ
NATEZENIA PROMIENIOWANIA SEONECZNEGO

Streszczenie: Artykut przedstawia zastosowanie empirycz-
nej dekompozycji modéw do filtrowania szybkozmiennych
sktadowych krzywej nat¢zenia promieniowania stonecznego.
Przedstawiono wyniki pomiaréw nat¢zenia promieniowania
stonecznego dla kilku typowych dni. Pomiary byly dokony-
wane z czestotliwoscia jednej probki na sekunde, co jest war-
toscia duza dla promieniowania stonecznego. Nastgpnie dane
zostaty ponownie sprobkowane bezposrednio oraz po wyeli-
minowaniu szybkozmiennych sktadowych z wykorzystaniem
empirycznej dekompozycji modéw. Dla kazdego z przypadkow
zostata wyznaczona warto$¢ dziennej energii promieniowania
stonecznego.

Stowa kluczowe: empiryczna dekompozycja modow, filtracja
sygnatu, promieniowanie stoneczne.






