PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 10 | 4 |

Tytuł artykułu

Wpływ nienasyconych kwasów tłuszczowych n-3 i n-6 na metabolizm tkanki kostnej

Warianty tytułu

EN
The effect of unsaturated fatty acids n-3 and n-6 on bone tissue metabolism

Języki publikacji

PL

Abstrakty

PL
Kości są aktywną metabolicznie tkanką podlegającą trwającemu przez całe życie procesowi modelowania. Metabolizm kości kontrolują czynniki systemowe, jak również i lokalne, a znaczącą rolę ogrywa także odpowiednio zbilansowana dieta. Wielo- nienasycone kwasy tłuszczowe (WKT) budzą zainteresowanie jako naturalne substancje, które mogą oddziaływać na komórki tkanki kostnej modyfikując ich metabolizm. Są one prekursorami eikozanoidów, które uczestniczą w wielu mechanizmach regulacyjnych. Przy udziale COX powstają prostaglandyny, prostacykliny i tromboksany, natomiast pod wpły­wem LOX leukotrieny. Z kwasu arachidonowego (AA) pod wpływem COX powstaje m.in. PGE2, która pośredni­czy w oddziaływaniu na tkankę kostną hormonów kalcytropowych, cytokin proresorbcyj- nych i czynników wzrostu. Prawidłowa suplementacja ogranicza działanie AA, czego skut­kiem jest obniżenie poziomu PGE2, a tym samym osłabienie intensywności zmian zaniko­wych tkanki kostnej. W świetle przeprowadzonych badań dotyczących leczenia, a przede wszystkim profilaktyki, suplementacja diety WKT odgrywa znaczącą rolę w metabolizmie tkanki kostnej zwierząt i ludzi.
EN
Bones are metabolically active tissues, which undergo a lifelong process of mod­eling. Bone metabolism is controlled by system factors as well as by local ones, besides balanced diet plays a significant role. Polyunsaturated fatty acids (PUFA) raise an interest as natural substances that can affect bone cells and modify their metabolism. They are the precursors of eicosanoids which are involved in a number of regulatory mechanisms, among others, at the level of bone tissue. With the participation of COX there appear pros­taglandins, prostacyclins and monoenes thromboxanes, while under the influence of LOX leukotrienes. From arachidonic acid (AA) under the influence of COX is formed PGE2, which in turn mediates in the impact on calciotropic hormones bone tissue, proresorptive cytokines and growth factors. Adequate supplementation reduces the activity of AA result­ing in a diminution of PGE2 level, thereby weakening the intensity of atrophic changes in bone tissue. In the light of conducted research on the treatment and in particular on the prevention, PUFA diet supplementation plays a significant role in the metabolism of both animal and human bone tissue.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

10

Numer

4

Opis fizyczny

s.23-34,tab.,bibliogr.

Twórcy

autor
  • Uniwersytet Przyrodniczy w Lublinie, Lublin
autor
  • Uniwersytet Przyrodniczy w Lublinie, Lublin

Bibliografia

  • Achremowicz K., Szary-Sworst K., 2005. Wielonienasycone kwasy tłuszczowe czynnikiem po­prawy stanu zdrowia człowieka. Nauka Technologia Jakość, 3, 23-35.
  • Albertazzi P., Coupland K., 2002. Polyunsaturated fatty acids: is there a role in postmenopausal osteoporosis prevention. Maturitas, 42, 13-22.
  • Appleton K.M., Fraser W.D., Rogers P.J., Ness A.R., Tobias J.H., 2011. Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. Br. J. Nutr. 105, 1145-1149.
  • Baird H.T., Eggett D.L., Fullmer S., 2008. Varying ratios of omega-3:omega-6 fatty acids on the pre- and postmortem bone mineral density, bone ash and bone breaking strength of laying chicken. Poultry Sci., 87, 323-328.
  • Bassey E., Littlewood J., Rothwell M., Pye D., 2000. Lack of effect of supplementation with es­sential fatty acids on bone mineral density in healthy pre- and post-menopausal women: two randomized controlled trials of Efacalt v.calcium alone. Br. J. Nutr., 83, 629-635.
  • Bhattacharya A., Fernandes G., Ebersole J.L., 2005. Omega-3 fatty acid effect on alveolar bone loss in rats. J. Dent. Res., 85, 648-652.
  • Bonewald L., 2006. Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3, 7-15.
  • Burdan F., Chałas A., Szumiło J., 2006. Cyklooksygenaza i prostanoidy - znaczenie biologiczne. Postępy Hig. Med. Dośw., 60, 129-141.
  • Caldwell M.D., Johansson H.T., Othersen H.B., 1972. Essential fatty acid deficiency in an infant receiving prolonged parenteral alimentation. J. Pediatr., 81, 894-898.
  • Celil A.B., Campbell P.G., 2005. BMP-2 and insulin-like growth factor-I mediate osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J. Biol. Chem., 280, 31353-31359.
  • Claassen N., Coetzer H., Steinmann C., Kruger M., 1995. The effect of different n-6/n-3 essential fatty acid ratios on calcium balance and bone in rats. Prostaglandins Leukot. Essent. Fatty Acids, 53, 13-19.
  • Coetzer H., Claassen N., van Papendorp D.H., Kruger M.C., 1994. Calcium transport by isolated brush border and basolateral membrane vesicles: role of essential fatty acid supplementation. Prostaglandins Leukot. Essent. Fatty Acids, 50, 257-266.
  • Cohen S.L., Moore A.M., Ward W.E., 2005. Flaxseed oil and inflammationassociated bone abnor­malities in interleukin-10 knockout mice. J. Nutr. Biochem., 16, 368-374.
  • Das U.N., 2000. Essential fatty acids and osteoporosis. Nutrition, 16, 386-390.
  • Dodin S., Lemay A., Jacques H., Legare F., Forest J.C., Masse B., 2005. The effects of flaxseed dietary supplement on lipid profile, bone mineral density, and symptoms in menopausal women: a randomized, double-blind, wheat germ placebo-controlled clinical trial. J. Clin. Endocrinol. Metab., 90, 1390-1397.
  • Green K.H., Wong S.C.F., Weiler H.A., 2004. The effect of dietary n-3 long-chain polyunsaturated fatty acids on femur mineral density and biomarkers of bone metabolism in healthy, diabetic and dietary-restricted growing rats. Prostaglandins Leukot. Essent. Fatty Acids, 71, 121-130.
  • Griel A.E., Kris-Etherton P.M., Hilpert K.F., Zhao G.,West S.G., Corwin R.L., 2007. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr. J., 6, 1-8.
  • Guan Y.F., Zhang Y.H., Breyer M.D., 2002. The role of PPARs in the transcriptional control of cellular processes. Drug News Perspect 15, 147-154.
  • Haag M., Magada O.N., Claassen N., Bohmer L.H., Kruger M.C., 2003. Omega-3 fatty acids modulate ATPases involved in duodenal Ca absorption. Prostaglandins Leukot. Essent. Fatty Acids 68, 423-429.
  • Jee W.S., Mori S., Li X.J., Chan S., 1990. Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone, 11, 253-266.
  • Jiang J., Lv H.S., Lin J.H., Jiang D.F., Chen Z.K., 2005. LTB4 can directly stimulate human osteoclast formation from PBMC independent of RANKL. Artif. Cells Blood Substit. Immobil. Biotechnol. 33, 391-403.
  • Johnston N.P., Nash L.L., Maceda E., Davidson R.T., Amstrong A., 2006. Effect of feeding diets enriched with either omega-3 or omega-6 polyunsaturated fatty acids on bone characteristics of turkey breeder hens. Word's Poult. Sci. J., 471, 119-124.
  • Korotkova M., Ohlsson C., Hanson L.A., Strandvik B., 2003. Perinatal essential fatty acid deficiency affects weight and bone growth and mineralization in adult rats. Pediatr. Res. 53, 28A.
  • Kosteniuk P. J., Shalhoub V., 2001. Osteoprotegerin: A physiological and pharmacological inhibition of bone resorption. Current Pharma. 7, 613-635.
  • Kruger M., Coetzer H., de Winter R., Gericke G., van Papendorp D., 1998. Calcium, gamma- linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin. Exp. Res., 10, 385-394.
  • Lau B.Y.Y., Ward W. E., Kang Y.X., Ma D.W.L., 2009. Femur EPA and DHA are correlated with femur biomechanical strength in young fat-1 mice. J. Nutr. Biochem. 20, 453-461.
  • Laufer S., 2003. Role of eicosanoids in structural degradation in osteoarthritis. Curr. Opin. Rheu­matol., 15, 623-62.
  • Li Y., Seifert M.F., Ney D.M., Grahn M., Grant A.L., Allen K.G., Watkins B.A., 1999. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed n-6 or n-3 fatty acids. J Bone Miner. Res., 14, 1153-1162
  • Li Y., Seifert M.F., Lim S.Y, Salem N., Watkins B.A., 2010. Bone mineral content is positively correlated to n-3 fatty acids in the femur of growing rats. Br. J. Nutr. 104, 674-685.
  • Liu D., Denbow D.M., 2001. Maternal dietary lipids modify composition of bone lipids and ex vivo prostaglandin E2 production in early postnatal Japanese quail. Poult. Sci., 80, 1344-1352.
  • Liu D., Veit H.P., Wilson J.H., Denbow D.M., 2003. Long-term supplementation of various dietary lipids alters bone mineral content, mechanical properties and histological characteristics of Japanese quail. Poult. Sci. 5, 831-839.
  • Liu X.H., Krishenbaum A., Yao S., Levine A.C., 2006. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann. N.Y. Acad. Sci., 1068, 225-233.
  • Massicotte F., Fernandes J.C., Martel-Pelletier J., Lajeunesse D., 2006. Modulation of insulinlike growth factor 1 levels in human osteoarthritic subchondral bone osteoblast. Bone, 38, 333-341.
  • Meghji S., Sandy J.R., Scutt A. M., Harvey W., Harris M., 1988. Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins, 36, 139-149.
  • Męczekalski B, Czyżyk A., 2009. Konwencjonalna hormonalna terapia zastępcza w leczeniu osteoporozy. Pol. Merk. Lek. 157, 72-77.
  • Nietfeld J.J., Wilbrink B., Helle M., Van Roy J.L M., Den Otter W., Swaak A.J.G., Huber-Bruning O., 1990. Interleukin-1-induced interleukin-6 is required for the inhibition of proteoglycan synthe­sis by interleukin-1 in human articular cartilage. Arthritis & Rheumatism, 33, 1695-1701.
  • Poulsen R.C., Moughan P. J., Kruger M.C., 2007. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp. Biol. Med., 232, 1275-1288.
  • Rahman M., Bhattacharya A., Banu J., Fernandes G., 2005. Reduced bone loss by docosahexaenoic acid (DHA) than eicosapentaenoic acid (EPA) in ovariectomised mice. J. Bone Miner. Res., 20, 127.
  • Raisz L.G., Fall P.M., 1990. Biphasic effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: interaction with cortisol. Endocrinology, 126, 1654-59.
  • Sharif P.S., Asalforoush M., Ameri F., Larijani B., Abdollahi M., 2010. The effect of n-3 fatty acids on bone biomarkers in Iranian postmenopausal osteoporotic women: a randomized clini­cal trial. AGE 32, 179-186.
  • Shen C.L., Yeh J.K., Rasty J., Li Y., Watkins B.A., 2006. Protective effect of dietary long-chain n-3 polyunsaturated fatty acids on bone loss in gonad-intact middle-aged male rats. Br. J Nutr., 95, 462-468.
  • Sun D., Krishnan A., Zaman K., Lawrence R., Bhattacharya A., Fernandes G., 2003. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice, J. Bone Miner. Res., 18, 1206-1216.
  • Traianedes K., Dallas M.R., Garrett I.R., Mundy G.R., Bonewald L.F., 1998. 5-Lipoxygenase Me­tabolites Inhibit Bone Formation in Vitro. Endocrinology, 7, 1374-1384.
  • Veldhuis J.D., Roemmich J.N., Richmond E.J., Rogol A.D., Lovejoy J.C., Sheffield-Moore M., Mauras N., Bowers C.Y., 2005. Endocrine control of body composition in infancy, childhood, and puberty. Endocr. Rev.26, 114-46.
  • Watkins B.A., Shen C.L., Allen K.G., Seifert M.F., 1996. Dietary n-3 and n-6 polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chickens. J. Bone Miner. Res., 11, 1321-1332.
  • Watkins B.A., Shen C.L., Mc Murtry J.P., Xu H., Brain S.D., Allen L.G., Seifert M.F., 1997. Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-I concentration and formation rate in chicks. J. Nutr., 127, 1084-1091.
  • Watkins B.A., Li Y., Seifer M.F., 2000. Dietary ratio of n-6/n-3 polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J. Nutr., 30, 2274-2284.
  • Watkins B.A., Lippman H.E., Le Bouteiller L., Li Y., Seifert M.F., 2001. Bioactive fatty acids: role in bone biology and bone cell function. Prog. Lipid Res., 40, 125-148.
  • Watkins B., Li Y., Lippman H., Feng S., 2003. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot. Essent. Fatty Acids, 68, 387-398.
  • Watkins B.A., Reinwald S., Li Y., Seifert M.F., 2005. Protective actions of soy isoflavones and n-3 PUFA on bone mass in ovariectomized rats. J. Nutr. Biochem., 16, 479- 88.
  • Watkins B.A., Li Y., Seifer M.F., 2006. Dietary ratio of n-6/n-3 PUFAs and docosahexaenoic acid: actions on bone mineral and serum biomarkers in ovariectomized rats. J. Nutr. Biochem., 17, 282-289.
  • Weiler H.A., Fitzpatrick-Wong S.C., 2002. Modulation of essential n-6:n-3 fatty acid ratios alters fatty acid status but not bone mass in piglets. J. Nutr., 132, 2667-2672.
  • Yao W., Jee W.S.S., Zhou H., Lu J., Cui L., Staterberg R., Liang T., Ma Y., 1999. Anabolic effect of prostaglandin E2 on cortical bone of aged male rats comes mainly from modeling-dependent bone gain. Bone, 25, 697-702.
  • Yoshida K., Oida H., Kobayashi T., Maruyama T., Tanaka M., Katayama T., Yamaguchi K., Segi E., Tsuboyama T., Matsushita M., Ito K., Ito Y., Sugimoto Y., Ushikubi F., Ohuchida S., Kondo K., Nakamura T., Narumiya S., 2002. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc. Natl. Acad. Sci., USA 99, 4580-4585.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f9bbdbbb-3a93-4609-8422-270b67a978de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.