PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 69 | 2 |

Tytuł artykułu

Long-term effects of soil management practices on selected indicators of chemical soil quality

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Wpływ wieloletniego stosowania zabiegów agrotechnicznych na wybrane właściwości chemiczne gleb

Języki publikacji

EN

Abstrakty

EN
The study was conducted in scope of Catch-C project "Compatibility of agricultural management practices and types of farming in the EU to enhance climate change mitigation and soil health" (7FP), realized in 2012-2014 by the consortium of partners from 10 European countries (http://www.catch-c.eu). This work reports the effects of soil management practices - under different soil and climatic conditions - on the selected soil chemical quality indicators, based on the analysis of data extracted from literature on long term experiments (LTEs) in Europe, as well as from LTEs held by the Catch-C consortium partners. The dataset related to soil chemical quality indicators consisted of 1044 records and referred to 59 long-term trials. The following indicators of chemical soil quality were analyzed: pH, N total content, N total stock, C:N ratio, N mineral content, P and K availability. They are the most frequently used indicators in the European literature on long-term experiments collected in the Catch-C project database. Soil organic carbon, however, the most important indicator was not presented here, due to it was covered by a separate study on indicators for climate change mitigation. The indicators were analyzed using their response ratio (RR) to a management practice. For a given treatment (management practice), this ratio was calculated as the quotient between the indicator value obtained in the treatment, and the indicator value in the reference treatment. The examples were: rotation (with cereals, with legume crops, with tuber or root crops, with grassland) vs. adequate monoculture, catch/cover crops vs. no catch/cover crops, no-tillage and no-inversion tillage vs. conventional tillage, mineral fertilization vs. no fertilization, organic fertilization (compost, farmyard manure, slurry) vs. mineral fertilization at the same available nitrogen input, crop residue incorporation vs. removal. All tested practices influenced soil chemical quality indicators. Both positive and negative effects were observed. When the RR values of seven soil chemical quality indicators were considered in an overall evaluation - based on their significance level, the number of indicators positively affected, and the size of the effects - the best practices among those tested were: farmyard manure application, no-inversion tillage, compost application, mineral fertilization, and no-tillage.
PL
Praca przedstawia wyniki ekstensywnej metaanalizy danych dotyczących wpływu zabiegów agrotechnicznych prowadzonych w zróżnicowanych warunkach glebowych i klimatycznych na wybrane właściwości chemiczne gleb. Metaanalizę wykonano na podstawie danych pochodzących z opublikowanych doświadczeń wieloletnich prowadzonych na terenie całej Europy. Analizowano następujące wskaźniki: odczyn pH gleby, zawartość N ogółem, zasób N ogółem, stosunek C:N, zawartość mineralnych form azotu (Nmin) oraz przyswajalnych form potasu i fosforu. Spośród zabiegów agrotechnicznych uwzględniono: zmianowanie, stosowanie poplonów roślin okrywowych (zabieranych z pola) oraz przyorywanie nawozów zielonych, siew bezpośredni, uprawę uproszczoną, nawożenie mineralne, nawożenie kompostem, obornikiem, gnojowicą oraz przyorywanie resztek pożniwnych. Biorąc pod uwagę wszystkie wskaźniki reakcji RR oraz statystyczną ocenę ich istotności, a także ilość wskaźników reagujących pozytywnie i wielkość tej reakcji, za najlepsze zabiegi agrotechniczne uznano: stosowanie obornika, uproszczoną uprawę roli, nawożenie kompostem, nawożenie mineralne, siew bezpośredni.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

69

Numer

2

Opis fizyczny

Article 1662 [18p.], fig.,ref.

Twórcy

autor
  • Department of Plant Nutrition and Fertilization, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
autor
  • Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland

Bibliografia

  • 1. Holland JM. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ. 2004;103:1-25. http://dx.doi.org/10.1016/j. agee.2003.12.018
  • 2. Alluvione F, Halvorson AD, Del Grosso SJ. Nitrogen, tillage, and crop rotation effects on carbon dioxide and methane fluxes from irrigated cropping systems. J Environ Qual. 2009;38:2023-2033. http://dx.doi.org/10.2134/jeq2008.0517
  • 3. Alluvione F, Bertora C, Zavattaro L, Grignani C. Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci Soc Am J. 2010;74:384-395. http://dx.doi.org/10.2136/sssaj2009.0092
  • 4. Lal R. Challenges and opportunities in soil organic matter research. Eur J Soil Sci. 2009;60:158-169. http://dx.doi.org/10.1111/j.1365-2389.2008.01114.x
  • 5. Luo Z, Wang E, Sun OJ. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ. 2010;139:224-231. http:// dx.doi.org/10.1016/j.agee.2010.08.006
  • 6. Tejada M, Gonzalez JL, Garcia-Martinez AM, Parrado J. Effects of different green manures on soil biological properties and maize yield. Bioresour Technol. 2008;99(6):1758-1767. http://dx.doi.org/10.1016/j.biortech.2007.03.052
  • 7. Alluvione F, Fiorentino N, Bertora C, Zavattaro L, Fagnano M, Chiaranda FQ, et al. Short-term crop and soil response to C-friendly strategies in two contrasting environments. Eur J Agron. 2013;45:114-123. http://dx.doi.org/10.1016/j.eja.2012.09.003
  • 8. Crews TE, Peoples MB. Legume versus fertilizer sources of nitrogen: Ecological tradeoff s and human needs. Agric Ecosyst Environ. 2004;102:279-297. http://dx.doi.org/10.1016/j. agee.2003.09.018
  • 9. Cherr CM, Scholberg JMS, McSorley R. Green manure approaches to crop production: a synthesis. Agron J. 2006;98:302-319. http://dx.doi.org/10.2134/agronj2005.0035
  • 10. Erhart E, Feichtinger F, Hartl W. Nitrogen leaching losses under crops fertilized with bio-waste compost compared with mineral fertilization. J Plant Nutr Soil Sci. 2007;170:608-614. http://dx.doi.org/10.1002/jpln.200625181
  • 11. Ikumo H. Estimation of potential supply of livestock waste compost to replace chemical fertilizer use in Japan based on 2000 census of agriculture. Jpn Agric Res Q. 2005;39:83-89. http://dx.doi.org/10.6090/jarq.39.83
  • 12. Spaccini R, Piccolo A, Conte P, Haberhauer G, Gerzabek MH. Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Bio-chem. 2002;34:1839-1851. http://dx.doi.org/10.1016/S0038-0717(02)00197-9
  • 13. Piccolo A, Spaccini R, Nieder R, Richter J. Sequestration of biologically labile organic carbon in soils by humified organic matter. Clim Change. 2004;67:329-343. http://dx.doi. org/10.1007/s10584-004-1822-1
  • 14. Johnston AE. The Rothamsted classical experiments. In: Leigh RA, Johnston AE, editors. Long-term experiments in agricultural and ecological sciences. Proceedings of a conference to celebrate the 150th anniversary of Rothamsted Experimental Station; 1993 Jul 14-17; Wallingford, UK. Wallingford: CAB International; 1994. p. 9-37.
  • 15. Pecio A, Syp A, Fotyma M, Jarosz Z. Impacts of soil management on chemical soil quality. Catch-C "Compatibility of Agricultural Management Practices and Types of Farming in the EU to Enhance Climate Change Mitigation and Soil Health". 2014. www.catch-c.eu.
  • 16. Spiegel H, Schlatter N, Haslmayr HP, Lehtinen T, Baumgarten. Impacts of soil management on indicators for climate change mitigation. Catch-C "Compatibility of Agricultural Management Practices and Types of Farming in the EU to Enhance Climate Change Mitigation and Soil Health". 2014. www.catch-c.eu.
  • 17. Uhlen G. Long-term effects of fertilizers, manure, straw and crop rotation on total-N and total-C in soil. Acta Agriculturae Scandinavica. 1991;41(2): 119—127. http://dx.doi. org/10.1080/00015129109438593
  • 18. Ministry of Agriculture, Fisheries and Food. Fertiliser recommendations for agricultural and horticultural crops (RB209). 7th ed. London: Stationery Office; 2000.
  • 19. Rasmussen KJ. Impact of ploughless soil tillage on yield and soil quality: a Scandinavian review. Soil Tillage Res. 1999;53:3-14. http://dx.doi.org/10.1016/S0167-1987(99)00072-0
  • 20. Hansen EM, Djurhuus J. Nitrate leaching as influenced by soil tillage and catch crop. Soil Tillage Res. 1997;41:203-219. http://dx.doi.org/10.1016/S0167-1987(96)01097-5
  • 21. Małecka I, Blecharczyk A, Dobrzeniecki T. Zmiany fizycznych i chemicznych właściwości gleby w wyniku stosowania uproszczeń w uprawie roli. Fragmenta Agronomica. 2007;1:182-189.
  • 22. Dzienia S, Pużyński S, Wereszczaka J. Impact of soil cultivation systems on chemical soil properties. Electronic Journal of Polish Agricultural Universities. Series Agronomy. 2001;4(2):5.
  • 23. Hussain I, Olson KR, Ebelhar SA. Long-term tillage effects on soil chemical properties and organic matter fractions. Soil Sci Soc Am J. 1999;63:1335-1341. http://dx.doi.org/10.2136/ sssaj1999.6351335x
  • 24. Epstein E, Taylor JM, Chancy RL. Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties. J Environ Qual. 1976;5(4):422-426. http://dx.doi.org/10.2134/jeq1976.00472425000500040021x
  • 25. Schlegel AJ. Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum. Journal of Production Agriculture. 2013;5(1):153-157. http://dx.doi. org/10.2134/jpa1992.0153
  • 26. Whitehead DC. Grassland nitrogen. Guildford: CABI/Biddles; 1995.
  • 27. Idkowiak M, Kordas L. Zmiany właściwości chemicznych i biologicznych gleby w wyniku stosowania uproszczeń w uprawie roli i zróżnicowanego nawożenia azotem. Fragmenta Agronomica. 2004;3:40-48.
  • 28. Koszański Z, Karczmarczyk S, Podsiadło C. Wpływ deszczowania i nawożenia azotem na pszenicę i pszenżyto ozime uprawiane na glebie kompleksu żytniego dobrego. Cz. III. Gospodarka wodna oraz chemiczne właściwości gleb. Zeszyty Naukowe Akademii Rolniczej w Szczecinie, seria Rolnictwo. 1995;59:51-56.
  • 29. Panak H, Wojnowska T, Sienkiewicz S. Zmiany niektórych właściwości chemicznych i fizykochemicznych czarnych ziem kętrzyńskich pod wpływem intensywnego nawożenia azotem. Roczniki Gleboznawcze. 1996;47(3/4):41-46.
  • 30. Vogeler I, Rogasik J, Funder U, Kerstin Panten K, Schnug E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009;103:137-143. http://dx.doi.org/10.1016/j.still.2008.10.004
  • 31. Pecio A, Niedźwiecki J. Effect of tillage depth on physical and chemical soil properties. In: Badalíková B, editor. Proceedings of the 5th International Soil Conference "Soil tillage -new perspectives"; 2008 Jun 30 - Jul 2; Brno, Czech Republic. Troubsko: ISTRO - Czech Branch; 2008. p. 141-147.
  • 32. Smith SJ, Schepers JS, Porter LK. Assessing and managing agricultural nitrogen losses to the environment. Advances in Soil Science. 1990;14:1-43. http://dx.doi. org/10.1007/978-1-4612-3356-5_1
  • 33. Oorts K, Bossuyt H, Labreuche J, Merckx JR, Nicolardot B. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. Eur J Soil Sci. 2007;58:248-259. http://dx.doi. org/10.1111/j.1365-2389.2006.00832.x
  • 34. Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res. 2000;53:215-230. http://dx.doi.org/10.1016/ S0167-1987(99)00107-5
  • 35. Blecharczyk A, Małecka I, Sierpowski J. Wpływ wieloletniego oddziaływania systemów uprawy roli na fizyko-chemiczne właściwości gleby. Fragmenta Agronomica. 2007;1:7-13.
  • 36. Stevenson FJ. Humus chemistry: genesis, compisition, reaction. 2nd ed. New York, NY: Willey; 1994.
  • 37. Sharpley AN, Smith SJ. Nitrogen and phosphorus forms in soils receiving manure. Soil Sci. 1995;159:253-258. http://dx.doi.org/10.1097/00010694-199504000-00004
  • 38. Plaza C, García-Gil IC, Polo A. Effects of pig slurry application on soil chemical properties under semiarid conditions. Agrochimica. 1997;36:1-2.
  • 39. Kaszubiak H, Durska G, Kaczmarek W, Filoda G. Effect of slurry on microorganisms and chemical properties of soil. Zentralbl Mikrobiol. 1983;138(7):501-509.
  • 40. Gangbazo G, Pesant AR, Barnett GM, Chauruest JP, Cluis D. Water contamination by ammonium nitrogen following the spreading of hog manure and mineral fertilizers. J Environ Qual. 1995;24:420-425. http://dx.doi.org/10.2134/jeq1995.00472425002400030004x
  • 41. Anderson R, Wu Y. Phosphorus quantity-intensity relationships and agronomic measures of P in surface layers of soil from a long-term slurry experiment. Chemosphere. 2001;42:161-170. http://dx.doi.org/10.1016/S0045-6535(00)00121-1
  • 42. Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, et al. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management. 1997;13:230-244. http://dx.doi. org/10.1111/j.1475-2743.1997.tb00594.x
  • 43. Aziz I, Ashraf T, Mahmood T, Islam KR. Crop rotation impact on soil quality. Pak J Bot. 2011;43(2):949-960.
  • 44. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, et al. Long-term tillage effects on soil quality. Soil Tillage Res. 1994;32:313-327. http://dx.doi. org/10.1016/0167-1987(94)00427-G
  • 45. Lemaire G, Recous S, Mary B. Managing residues and nitrogen in intensive cropping systems. New understanding for efficient recovery by crops. In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, et al., editors. Proceedings of the 4th International Crop Science Congress; 2004 Sep 26 - Oct 1; Brisbane, Australia. Gosford: The Regional Institute Ltd; 2004.
  • 46. Gselman A, Kramberger B. Benefits of winter legume cover crops require early seeding. Aust J Agric Res. 2008;59:1156-1163. http://dx.doi.org/10.1071/AR08015
  • 47. Nieder R, Benbi DK. Carbon and nitrogen in the terrestrial environment. Dordrecht: Springer; 2008. http://dx.doi.org/10.1007/978-1-4020-8433-1
  • 48. Sparrow SD, Lewis CE, Knight CW. Soil quality response to tillage and crop residue removal under subarctic conditions. Soil Tillage Res. 2006;91(1-2):15-21. http://dx.doi. org/10.1016/j.still.2005.08.008
  • 49. Grace PR, Oades JM, Keith H, Hancock TW. Trends in wheat yields and soil organic carbon in the Permanent Rotation Trial at the Waite Agricultural Research Institute, South Australia. Aust J Exp Agric. 1995;35:857-864. http://dx.doi.org/10.1071/EA9950857
  • 50. Rodriguez-Lizana A, Carbonell R, Gonzalez P, Ordónez R. N, P and K released by the field decomposition of residues of a pea-wheat-sunflower rotation. Nutrient Cycling in Agroecosystems. 2010;87:199-208. http://dx.doi.org/10.1007/s10705-009-9328-x
  • 51. Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW. A climatic stratification of the environment of Europe. Global Ecology and Biogeography. 2005;14:549-563. http://dx.doi.org/10.1111/j.1466-822X.2005.00190.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f9aee634-a373-4b07-ae46-c53e085ca5ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.