PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

The effect of subacute exposure to acrylamide on femoral bone microstructure in laboratory mice

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Acrylamide, a substituted unsaturated hydrocarbon, is often found in fried potatoes, flour, baby food, coffee, and olives. It is one of the most commonly consumed neurotoxins by humans. To date, its effect on bone structure has not been investigated in experimental animals. The aim of our manuscript was to analyze the impact of subacute exposure to acrylamide on the microscopic compact and trabecular bone tissue structures in laboratory mice. Adult male mice were divided into two groups. Animals from the experimental group (group E, n = 4) were treated perorally with two doses of acrylamide (1 mg/kg b.w.) during 24 hours. The group without administration of AA served as a control (group C, n = 4). Three hours after the second dose of AA (after 27 hours), mice were killed and their femurs were used for microscopic analysis. Our results demonstrate that subacute exposure to acrylamide causes an absence of the primary vascular radial bone tissue in pars posterior of the endosteal border. Mice from E group had more intact secondary osteons in pars medialis of the middle part of compact bone. Also, a few resorption lacunae were found in pars anterior of periosteal borders in these mice. Subacute exposure to AA significantly decreased the size of the primary osteon vascular canals (P<0.05) in compact bone tissue. In trabecular bone tissue, the values for bone volume, trabecular number, and bone surface were significantly increased in mice from the E group. In contrast, the value for trabecular separation was significantly decreased in these mice.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

P.2711-2715,fig.,ref.

Twórcy

autor
  • Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
autor
  • Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
autor
  • Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
autor
  • Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
autor
  • Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
autor
  • Department of Animal Physiology and Toxicology, Institute of Biology, Faculty of Geography and Biology, Pedagogical University in Krakow, Poland
autor
  • Department of Animal Physiology and Toxicology, Institute of Biology, Faculty of Geography and Biology, Pedagogical University in Krakow, Poland
autor
  • Department of Animal Physiology and Toxicology, Institute of Biology, Faculty of Geography and Biology, Pedagogical University in Krakow, Poland
  • Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic

Bibliografia

  • 1. PARK J., KAMENDULIS L.M., FRIEDMAN M.A., KLAUNIG J.E. Acrylamide–Induced Cellular Transformation. Toxicol. Sci. 65 (2), 177, 2002.
  • 2. LI J., LI D., YANG Y., XU T., LI P., HE D. Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. J. Appl. Toxicol. 36 (1), 60, 2015.
  • 3. PEDRESCHI F., MARIOTTI M.S., GRANBY K. Current issues in dietary acrylamide: formation, mitigation and risk assessment. J. Sci. Agric. 94 (1), 9, 2014.
  • 4. FRIEDMAN M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 6 (6), 1752, 2015.
  • 5. KOPAŃSKA M., LUKÁČ N., KAPUSTA E., FORMICKI G. Acrylamide Influence on Activity of Acetylcholinesterase, Thiol Groups, and Malondialdehyde Content in the Brain of Swiss Mice. J. Biochem. Mol. Toxicol. 29 (10), 472, 2015.
  • 6. BELAND F.A., MELLICK P.W., OLSON G.R., MENDOZA M.C., MARQUES M.M., DOERGE D.R. Carcinogenicity of acrylamide in B6C3F(1) mice and F344/N rats from a 2-year drinking water exposure. Food Chem. Toxicol. 51, 149, 2013.
  • 7. PARK H.R., KIM M.-S., KIM S.J., PARK M., KONG K.H., KIM H.S., KWACK S.J., KANG T.S., KIM S.H., KIM H.S., LEE J. Acrylamide induces cell death in neural progenitor cells and impairs hippocampal neurogenesis. Toxicol. Lett. 193 (1), 86, 2010.
  • 8. RAJU J., ROBERTS J., TAYLOR M., PATRY D., CHOMYSHYN E., CALDWELL D., COOKE G., MEHTA R. Toxicological effects of short-term dietary acrylamide exposure in male F344 rats. Environ. Toxicol. Pharmacol. 39 (1), 85, 2015.
  • 9. RODRÍGUEZ-RAMIRO I., MARTÍN M.Á., RAMOS S., BRAVO L., GOYA L. Olive oil hydroxytyrosol reduces toxicity evoked by acrylamide in human Caco-2 cells by preventing oxidative stress. Toxicology. 288 (1-3), 43, 2011.
  • 10. MARTINIAKOVÁ M., OMELKA R., GROSSKOPF B., SIROTKIN A. V., CHRENEK P. Sex-related variation in compact bone microstructure of the femoral diaphysis in juvenile rabbits. Acta Vet. Scand. 50, 15, 2008.
  • 11. MARTINIAKOVÁ M., OMELKA R., JANCOVÁ A., STAWARZ R., FORMICKI G. Heavy metal content in the femora of yellow-necked mouse (Apodemus flavicollis) and wood mouse (Apodemus sylvaticus) from different types of polluted environment in Slovakia. Environ. Monit. Assess. 171 (1-4), 651, 2010.
  • 12. ENLOW D.H., BROWN S.O. Comparative histological study of fossil and recent bone tissues. Part I., Tex. J. Sci. 8, 405, 1956.
  • 13. RICQLÉS A.J., MEUNIER F.J., CASTANET J., FRANCILLON-VIEILLOT H. Comparative microstructure of bone. Bone 3, Bone Matrix and Bone Specific Products. Hall BK. Boca Raton: CRC Press. 1991.
  • 14. TREUTING P.M., DINTZIS S.M. Comparative Anatomy and Histology a Mouse and Human Atlas. Oxford, UK, Elsevier Inc. 2012.
  • 15. ALTURFAN A.A., TOZAN-BECEREN A., SEHIRLI A.Ö., DEMIRALP E., SENER G., OMURTAG G. Z. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol. Biol. Rep. 39 (4), 4589, 2012.
  • 16. MODY N., PARHAMI F., SARAFIAN T.A., DEMER L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radical Bio. Med. 31 (4), 509, 2001.
  • 17. WAUQUIER F., LEOTOING L., COXAM V., GUICHEUX J., WITTRANT Y. Oxidative stress in bone remodelling and disease. Trends. Mol. Med. 15 (10), 468, 2009.
  • 18. BAI X., LU D., LIU A., ZHANG Z., LI X., ZOU Z., ZENG W., CHENG B., LUO S. Reactive Oxygen Species Stimulates Receptor Activator of NF-κB Ligand Expression in Osteoblast. J. Biol. Chem. 280 (17), 17497, 2005.
  • 19. LIU A.L., ZHANG Z.-M., ZHU B.-F., LIAO Z.-H., LIU Z. Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell. Biol. Int. 28 (12), 905, 2004.
  • 20. SHWEIKI D., ITIN A., SOFFER D., KESHET E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359 (6398), 843, 1992.
  • 21. SIFFERT R.S. The role of alkaline phosphatase in osteogenesis. J. Exp. Med. 93, 415, 1951

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f926bf1a-a656-4771-b2ca-3c12f8d26334
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.