PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 3 |
Tytuł artykułu

Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacteriophages are an attractive tool for application in the therapy of bacterial infections, for biological control of bacterial contamination of foodstuffs in the alimentary industry, in plant protection, for control of water-borne pathogens, and control of environmental microflora. This review is mainly focused on structures governing phage recognition of host cell and mechanisms of phage adsorption and penetration into microbial cell.
Wydawca
-
Rocznik
Tom
59
Numer
3
Opis fizyczny
p.145-155,ref.
Twórcy
autor
  • Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
  • Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
  • Pure and Applied Biochemistry, Lund University, Lund, Sweden
autor
  • Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
Bibliografia
  • Arscott P.G. and E.B. Goldberg. 1976. Cooperative action of the T4 tail fibers and beseplate in triggering conformational change and in determining host range. Virology 69: 15-22.
  • Babu K.S., W.S. Spence, M.R. Monteville, B.L. Geller. 1995. Characterization of a cloned gene (pip) from Lactpcoccus lactis required for phage infection. Dev. Biol. Stand. 85: 569-575.
  • Bamford D. and L. Mindich. 1982. Structure of the lipid-con-taining bacteriophage PRD1. Disruption of wild-type and nonsense mutant phage particles with guanidine hydrochloride. J. Virol. 44: 1031-1038.
  • Bamford D.H., E.T. Palva and K. Lounatmaa. 1976. Ultrastructure and life cycle of the lipid-containing bacteriophage φ 6. J. Gen. Virol. 32: 249-259.
  • Bamford D.H., M. Romantschuk and P.J. Somerharju. 1987. Membrane fusion in prokaryotes: bacteriophage φ 6 membrane fuses with the Pseudomonas syringae outer membrane. EMBO J. 6: 1467-1473.
  • Bartell P.F., T.E. Orr, J.F. Reese and T. Imaeda. 1971. Interaction of Pseudomonas bacteriophage 2 with the slime polysaccharide and lipopolysaccharide of Pseudomonas aeruginosa strain B1. J. Virol. 8: 311-317.
  • Bassford P.J., C. Bradbeer, R.J. Kadner and C.A. Schnaitman. 1976. Transport of vitamin B₁₂ in tonB mutants of Escherichia coli.J. Bacteriol 128: 242-247.
  • Benson S.D., J.K. Bamford, D.H. Bamford and R.M. Burnett. 1999. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell. 98: 825-833.
  • Bradley D.E. 1967. Ultrastructure of bacteriophages and bacteriocins. Bact. Rev. 31: 230-311.
  • Braun V., R.E. Hancock, K. Hantke and A. Hartmann. 1976 Functional organization of the outer membrane of Escherichia coli: phage and colicin receptor as components of iron uptake systems. J. Supramol. Struct. 5: 37-58.
  • Braun V and K. Hantke. 1997. Bacterial receptors for phages and colicins as constituents of specific transport systems. Microbial Interactions. Receptor and Recognition. 3: 101-137.
  • Braun V., K. Schaller and H. Wolff. 1973. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli IB. Biochim. Biophys. Acta. 323: 87-97.
  • Butcher S.J., D.H. Bamford and S.D. Fuller. 1995. DNA packaging orders the membrane of bacteriophage PRD1. EMBO J. 14: 6078-6086.
  • Butcher S.J., T. Dokland, P.M. Ojala, D.H. Bamford and S.D. Fuller. 1997. Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J. 16: 4477-4487.
  • Caldentey J. and D.H. Bamford. 1992. The lytic enzyme of the Pseudomonas phage 6: purification and biochemical characterization. Biochim. Biophys. Acta. 1159: 44-50.
  • Castillo F.J. and P.F. Bartell. 1976. Localization and functional role of the Pseudomonas bacteriophage 2 depolymerase. J. Virol. 18: 701-708.
  • Chaby R. and R. Girard. 1980. Adsorbtion and endo-glycosida.se activity of phage φ1 (40) on Salmonella johanneshury O polysaccharide. Virology. 105: 136-147.
  • Chakrabarty A. M., J.F. Niblack and IX; Gunsalus. 1967. A phage-initiated polysaccharide depolymerase in Pseudomonas putida. Virology 32: 532-534.
  • Charbit A., J. Wang, V. Michel and M. Hofnung. 1998. A cluster of charged and aromatic residues in the C-terminal portion of maltoporin participates in sugar binding and uptake. Mol. Gen. Genet. 260: 185-192.
  • Chatterjee A.N. 1969. Use of bacteriophfage-resistant mutants to study the nature of the bacteriophage receptor site of Staphylococcus aureus. J. Bact. 98: 519-527.
  • Coyettl J. and J.M. Gheysen. 1968. Structure of the cell wall of Staphylococcus aureus strain Copenhagen. IX. Teichoic acid and phage adsorbtion. Biochemistry. 7: 2385-2389.
  • Crawford J.T. and E.B. Goldberg. 1977. The effect of baseplate mutation on the requirement for tail fiber binding for irreversible adsorption of bacteriophage T4. J. Mol. Biol. 111: 305-313.
  • Crawford J.T. and E.B. Goldberg. 1980. The function of tail fibers in triggering baseplate expansion of bacteriophage T4. J. Mol. Biol. 139: 679-690.
  • Datta D.B., B. Arden and U. Henning. 1977. Major protein of the Escherichia coli outer cell envelope membrane as bacteriophage receptor. J. Bacteriol 131: 821-829.
  • Daugelavicius R., J.K.H. Bamford and D.H. Bamford. 1997. Changes in host cell energetics in response to bacteriophage PRD1 DNA entry. J. Bacteriol. 179: 5203-5210.
  • Daugelavicius R., V. Cvirkaité, A. Gaidclyté, E. Bakiené, R. Gabrénaité-Verkhovskaya, D.H. Bamford. 2005. Penetration of enveloped double-stranded RNA bacteriophages φ13 and φ6 into Pseudomonas syringae cells. J. Virol. 79: 5017-5026.
  • Davison S., E. Couture-Tosi, T. Candela, M. Mock and A. Fouet. 2005. Identification of the Bacillus anthracis γ phage receptor. J. Bacteriol 187: 6742-6749.
  • Delbruck M. 1940. Adsorption of bacteriophage under various physiological conditions of the host. J. Gen. Physiol. 23: 631-642.
  • Eriksson U. and A.A. Lindberg. 1977. Adsorbtion of phage P22 to Salmonella typhimurium. J. Gen. Virol. 34: 207-221.
  • Eriksson U., S.B. Svenson, J. Lönngren and A.A. Lindberg. 1979. Salmonella phage glycanases: substrate specificity of the phage P22 endorhamnosidase. J. Gen. Virol. 43: 503-511.
  • Espejo R.T. and E.S. Canelo. 1968. Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology 34: 738-747.
  • Feige U. and S. Stirm. 1976. On the structure of the Escherichia coli C cell wall lipopolysaccharide core and on its ΦX174 receptor region. Biochem. Biophys. Res. Commun. 71: 566-573.
  • Frost G. E. and H. Rosenberg. 1975. Relationship between the tonB locus and iron transport in Escherichia coli. J. Bacteriol 124: 704-712.
  • Gaidelyte A., V. Cvirkaite-Krupovic, R. Daugelavicius, J.K. Bamford and D.H. Bamford. 2006. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thurin-giensis. J. Bacteriol 188: 5925-5934.
  • Geller B.L., R.G. Ivcy, J.E. Trempy and B. Hettinger-Smith. 1993. Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol 175: 5510-5519.
  • Gheysen J.M., J.L. Strominger and D. Tipper. 1968. Bacterial cell wall. Comp. Biochem. Physiol. 26A: 53.
  • Girard R. and R. Chaby. 1981. Comparative studies on Salmonella johanneshury bacteriophages: morphology, virulence and interaction with the host cell lipopolysaccharide. Ann. Microbiol. (Inst. Pasteur) 132B: 197-214.
  • Glacer L., H. Lonesco and P. Shaefer. 1966. Teichoic acids as components of a specific phage receptor in Bacillus subtilis. Biochim. Biophys. Acta. 124: 415-417.
  • Grahn A.M., J. Caldentcy, J.K. Bamford and D.H. Bamford. 1999. Stable packaging of phage PRD1 DNA requires adsorption protein P2, which binds to the IncP plasmid-encoded conjugative transfer complex. J. Bacteriol 181: 6689-6696.
  • Hancock R.E.W., K. Hantke and V. Braun. 1976. Iron transport in Escherichia coli K12: involvement of the colicin B receptor and of a citrate-inducible protein. J. Bacteriol 127: 1370-1375.
  • Hantke K. 1978. Major outer membrane proteins of Escherichia coli K12 serve as receptors for phages T2 (protein Ia) and 343 (protein Ib). Mol. Gen. Genet. 164: 131-135.
  • Hashemolhosseini S., Z. Holmes, B. Mutschler and U. Henning. 1994a. Alterations of receptor specificities of coliphages of the T2 family. J. Mol. Biol. 240: 105-110.
  • Hashemolhosseini S., D. Montag, L. Krämer and U. Henning. 1994b. Determinants of receptor specificity of coliphages of the T4 family. A chaperone alters the host range. J. Mol. Biol. 241: 524-533.
  • Heller K.J. 1990. Molecular interaction between bacteriophage and gram-negative cell envelope. J. Mol. Biol. 216: 327-334.
  • Heller K. and V. Braun. 1979. Accelerated adsorption of bacteriophage T5 to Escherichia coliY, resulting from reversible tail fiber lipopolysaccharide binding. J. Bact. 139: 32-38.
  • Heller K. and V. Braun. 1982. Polymannose O antigens of Escherichia coli: the binding sites for the reversible adsorption of bacteriophage T via the L-shaped tail fibers. J. Virol. 42: 222-227.
  • Hemphill H.E. and H.R. Whiteley. 1975. Bacteriophages of Bacillus subtilis. Bact. Rev. 39: 257-315.
  • Henning I .. I. Sonntag and I. Hindennach. 1978. Mutants (ompA) affecting a major outer membrane proteine of Escherichia coli. Europ. J. Biochem. 92: 491-498.
  • Hohn T. and B. Hohn. 1970. Structure and assembly of simple RNA bacteriophages. Advan. Virus Res. 16:43-98.
  • Hershey A.D., G.M. Kalmanson and J. Bronfenbrenner. 1994. Coordinate effect of electrolyte and antibody on infectivity of bacteriophage. J. Immunol. 48:221-238.
  • Iwashita S. and S. Kanegasaki. 1973. Smooth specific phage adsorption: endorhamnosidase activity of tail part of P22. Biochem. Biophys. Res. Commun. 5: 103-109.
  • Iwashita S. and S. Kanegasaki. 1976. Enzymic and molecular properties of baseplate parts of bacteriophage. J. Biochem. 65: 87-94.
  • Jazwinski S.M., A.A. Lindberg and A. Kornberg. 1975. The lipopolysaccharide receptor for bacteriophages Φ X174 and S13. Virology. 66: 268-282.
  • Jesaitis M.A. and W.F. Goebel. 1952. The chemical structure and antiviral properties of the somatic antigen of phase II Shigella sonei. J. exp. Med. 96: 409-424.
  • Kanamaru S., P.G. Leiman, V.A. Kostyuehenko, P.R. Chipman, V.V. Mesyanzhinov, F. Arisaka and M.G. Rossmann. 2002. Structure of the cell-puncturing device of bacteriophage T4. Nature. 415: 553-557.
  • Kanegasaki S. and A. Wright. 1973. Studies on the mechanism of phage adsorbtion: interaction between phage ε¹⁵ and its cellular receptor. Virology 52: 160-173.
  • Kenney, J.M., J. Hantula, S.D. Fuller, L. Mindich, P.M. Ojala and D.H. Bamford. 1992. Bacteriophage φ6 envelope elucidated by chemical crosslinking, immunodetection, and cryoelectron microscopy. Virology. 190: 635-644
  • Keogh B.P. and G. Pettingill. 1983. Adsorption of bacteriophage eb7 on Streptococcus cremoris EB7. Appl. Environ. Microbiol. 45: 1946-1948.
  • Kivela H.M., R. Daugelaviius, R.H. Hankkio, J.K.H. Bamford and D.H. Bamford. 2004. Penetration of membrane-containing double-stranded-DNA bacteriophage PM2 into Pseudoalteromonas hosts. J. Bacteriol 186: 5342-5354.
  • Koebnik R. 1999a. Structural and functional roles of the surface-exposed loops of the beta-barrel membrane protein OmpA from Escherichia coli. J. Bacteriol 181: 3688-3694.
  • Koebnik R. 1999b. Membrane assembly of the Escherichia coli outer membrane protein OmpA: Exploring sequence constraints on transmembrane beta-strands. J. Mol. Biol. 285: 1801-1810.
  • Krahn P.M., R.J. O'Callaghan and W. Paranehych. 1972 Stages in phage R17 infection: VI. Injection of a protein and RNA into the host cell. Virology 47: 628-637.
  • Labedan B. and E.B. Goldberg. 1979. Requirement for membrane potential in injection of Phage T4 DNA. Proc. Nat. Acad. Sci. 76: 4669-4673.
  • Lanni Y.T. 1965. DNA transfer from phage T5 to host cell: dependence on intercurrent protein synthesis. Proc. Nat. Acad. Sci. 53: 969-973.
  • Lanni Y.T. 1968. First-step transfer deoxyribonucleic acid of bacteriophage T5. Bact. Rev. 32: 227-242.
  • Letellier L., P. Boulanger, L. Plançon, P. Jacquot and M. Santamaria. 2004. Main features on tailed phage, host recognition and DNA uptake. Front. Biosci. 9: 1228-1339.
  • Lindberg A.A. 1967. Studies of a receptor for Felix O-1 phage in Salmonella Minnesota. J. Gen. Microbiol. 48: 225-233.
  • Lindberg A.A. 1973. Bacteriophage receptors. Ann. Rev. Microbiol. 27: 205-241.
  • Lindberg A.A. and C.G. Hellerovist. 1971. Bacteriophage attachment sites, serological specifity and chemical composition of the lipopolysaccharides of semi-rough and rough mutants of Salmonella typhimurium. J. Bact. 105: 67-61.
  • Lindberg A.A., R. Wollin, P. Gemski and J.A. Wohlhieter. 1978. Interaction between bacteriophage Sf6 and Shigella flexneri. J. Virol. 27: 38-44.
  • Lotz W. 1977. Bacteriophage 7-7-1 adsorbs to the complex flagella of Rhizodium lupine H13-3 / W. Lotz, G. Acker, R. Schmitt/ / J. Gen. Virol. Vol. 34. - p. 9-17.
  • Lovett P. S. 1972. PBP1: a flagella specific bacteriophage mediating transduction in Bacilluspumilis. Virology. 47: 743-752.
  • Luderitz O., K. Jann and R. Wheat. 1968. Somatic and capsular antigens of gram-negative bacteria. Camp. Biochem. 26A: 105-228.
  • Lundstrom K.H., D.H. Bamford, E.T. Palva and K. Lounatmaa. 1979. Lipid-containing bacteriophage PR4: structure and life cycle. J. Gen. Virol. 43: 538-592.
  • Lyra C., H. Savilahti and D.H. Bamford. 1991. High frequency transfer of linear DNA containing 50-covalently linked terminal proteins: electroporation of bacteriophage PRD1 genome into Escherichia coli. Mol. Gen. Genet. 228: 65-69.
  • Manning P.A. and P. Reeves. 1976. Outer membrane of Escherichia coli K12: tsx mutants (resistant to bacteriophage T6 and colicin K) lack an outer membrane protein. Biochem. Biophys. Res. Commun. 71: 466-471.
  • Manning P.A. and P. Reeves. 1978. Outer membrane of Escherichia coli K12: isolation of a common receptor protein for bacteriophage T6 and colicin K. Mol. Gen. Genetics. 158: 279-286.
  • Meynell G.G. and A.M. Lawn. 1968. Filamentous phages specific for the I sex factor. Nature 217: 1184-1186.
  • Michael J.G. 1968. The surface antigen and phage receptors in Escherichia coli B. Proc. Soc. Exp. Biol. (N. Y.) 128: 434-438.
  • Mindich L., D. Bamford, T. McGraw and G. Mackenzie. 1982. Assembly of bacteriophage PRD1: particle formation with wild-type and mutant viruses. J. Virol. 44: 1021-1030.
  • Mindich L. and J. Lehman. 1979. Cell wall lysin as a component of the bacteriophage φ6 virion. J. Virol. 30: 489-496.
  • Molineux I.J. 2001. No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol. 40: 1-8.
  • Molineux I.J. 2005. The T7 Group, pp. 277-301. In: R. Calendar (ed). The Bacteriophages. Oxford University Press, New York.
  • Montag D., S. Hashemolhosseini and U. Henning. 1990. Receptor-recognizing protein of T-even type bacteriophages. The receptor-recognizing area of proteins 37 of phages T4, Tula and Tulb. J. Mol. Biol. 216: 327-334.
  • Montag D., I. Riede, M.L. Eschbach, M. Degen and U. Henning. 1987. Receptor-recognizing proteins of T-even type bacteriophages. Constant and hypervariable regions and an unusual case of evolution. J. Mol. Biol. 196: 165-174.
  • Monteville M.R., B. Ardestani and B.L. Geller. 1994. Lactococcal bacteriophages require host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl. Environ. Microbiol. 60: 3204-3211.
  • Moody M.F. 1973. Sheath of bacteriophage T4. III. Contraction mechanism deduced from partially contracted sheaths. J. Mol. Biol. 80: 613-635.
  • Murayama V., S. Kotani and K. Kato. 1968. Solubilization of phage receptor substances from cell walls of Staphylococcus aureus (strain Copenhagen) by cell wall lytic enzymes. Biken. J. 11: 269.
  • Nakae T. 1976. Identification of the outer membrane protein of E. coli that produces transmembrane channel in reconstituted vesicle membranes. Biochem. Biophys. Res. Com. 71: 877-884.
  • Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67: 593-656.
  • Olsen R.H., J. Siak and R.H. Gray. 1974. Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J. Virol. 14: 689-699.
  • Park B.H. 1956. An enzyme produced by a phage-host cell system: I. The properties of a Klebsiella phage. Virology 2: 711-718.
  • Pate J.L., S.J. Petzold and T.H. Umbreit. 1973. Two flagellotropic phages and one pilus-specific phage active against Asticca-caulis biprosthecum. Virology 94: 21-37.
  • Peisajovich S.G. and Y. Shai. 2002. New insights into the mechanism of virus-induced membrane fusion. Trends Biochem. Sci. 27: 183-190.
  • Picken R.N. and I.R. Beacham. 1977. Bacteriophage resistant mutant of Escherichia coli K12. Location of receptors within the lipopolysaccharide. J. Gen. Microbiol. 102: 305-318.
  • Prehm P. and K. Jann. 1976. Enzymatic action of coliphage Ω 8 and its possible role in infection. J. Virol. 19: 940-949.
  • Prehm P., B. Jann, K. Jann, G. Schmidt and S. Stirm. 1976 On a bacteriophage T3 and T4 receptor region within the cell wall lipopolysaccharide of Escherichia coli B. J. Mol. Biol. 101: 277-281.
  • Quiberoni A. and J.A. Reinheimer. 1998. Physicochemical characterization of phage adsorption to Lactobacillus helveticus ATCC 15807 cells. J. Appl. Microbiol. 85: 762-768.
  • Raisanen L., C. Draing, M. Pfitzenmaicr, K. Schubert, T. Jaakonsaari. S. von Aulock, T. Hartung and T. Alatossava. 2007. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and α -glucose substitution of poly(glycerophosphate) backbones. J. Bacteriol 189: 4135-4140.
  • Rakieten M.L. and T.L. Rakieten. 1937. Relationship between staphylococci and bacilli belonging to the subtilis group as shown by bacteriophage adsorbtion. J. Bact. 34: 285-300.
  • Randall-Hazelbauer L., M. Schwartz. 1973. Isolation of the bacteriophage lambda receptor from Eschericia coli. J. Bacteriol 116: 1436-1446.
  • Reske K., B. Wallenfels and K. Jann. 1973. Enzymatic degradation of O-antigenic lipopolysaccharides by a coliphage Ω8. Europ. J. Biochem. 36: 167-171.
  • Riede I., M. Degen and U. Henning. 1985. The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. Embo. J. 4: 2343-02346.
  • Roberts J.W. and J.E.A. Steitz. 1967. The reconstitution of infective bacteriophage R17. Proc. Nat. Acad. Sci. USA 58: 1416-1421. Romantschuk M. and H. Bamford. 1985. Function of pili in bacteriophage φ6 penetration. J. Gen. Virol. 66: 2461-2469.
  • Rydman P.S., J. Caldentey, S.J. Butcher, S.D. Fuller, T. Rutten and D.H. Bamford. 1999. Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex. J. Mol. Biol. 291: 575-587.
  • Rydman P.S. and D.H. Bamford. 2000. Bacteriophage PRD1 DNA entry uses a viral membrane-associated transglycosylase activity. Mol. Microbiol. 37: 356-363.
  • Schafer A., A. Geis, H. Neve and M. Teuber. 1991. Bacteriophage receptors of Lactococcus lactis subsp. diacetylactis F7/2 and Lactococcus lactis subsp. cremoris Wg2-1. FEMS Microbiol. Lett. 78: 69-74.
  • Schlesinger M. 1932. Adsorption of bacteriophages to homologous bacteria. II. Quantitative investigation of adsorption velocity and saturation. Estimation of the particle size of the bacteriophage. Immunitaetsforschung. 114: 149-160.
  • Schweizer M. and U. Henning. 1977. Action of a major outer cell envelope membrane protein in conjugation of Escherichia coli. J. Bacteriol. 129: 1651-1652.
  • Scurray R.A., E.W. Hancock and P. Reeves. 1974. Con mutants: class of mutants of Escherichia coli K12 lacking a major cell wall protein and defective in conjugation and adsorbtion of a bacteriophage. J. Bacteriol. 119: 726-735.
  • Sillankorva S., R. Oliveira, M.J. Vieira, I. Sutherland and J. Azeredo. 2004. Pseudomonas fluorescens infection by bacteriophage US1: the influence of temperature, host growth phase and media. FEMS Microbiol. Lett. Vol. 241: 13-20.
  • Shade S.Z., J. Adler and H. Ris. 1967. How bacteriophage χ attack motile bacteria. J. Virol. 1: 599-609.
  • Shaw D.R.D. and A.N. Chatterjee. 1971. O-acetyl groups as component of the bacteriophage receptor on Staphylococcus aureus cell wall. J. Bact. 108: 584-585.
  • Smith A.E. and A. Helenius. 2004. How viruses enter animal cells. Science. 304: 237-242.
  • Stirm S., W. Bessler, F. Fehmel and E. Freund-Mölbert. 1971a. Bacteriophage particles with endo-glycosidase activity. J. Virol. 8: 343-346.
  • Stirm S., W. Bessler, F. Fehmel, E. Freund-Mölbert and H. Thurow. 1971b. Isolation of spike-formed particles from bacteriophage lysates. Virology 45: 303-308.
  • Steitz J.A. 1968a. Identification of the A protein as a structural component of bacteriophage R17. J. Mol. Biol. 33: 923-936.
  • Steitz J.A. 1968b. Isolation of the A protein from bacteriophage R17. J. Mol. Biol. 33: 937-945.
  • Takeda K. and H. Uetake. 1973. In vitro interaction between phage and lipopolysaccharide: a novel glycosidase associated with Salmonella phage ε ¹⁵. Virology 52: 148-159.
  • Taylor K. 1965. Enzymatic deacetylation of Vi-polysaccharide by Vi-phage II. Biochem. Biophys. Res. Commun. 20: 752-756.
  • Taylor K. 1966. Physical and chemical changes of Vi-polysaccharide due to Vi-phage II action. Acta. Biochim. Polon. 13: 79-106.
  • Valyasevi R., W.E. Sandine and B.L. Geller. 1990. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 56: 1882-1889.
  • Valyasevi R., W.E. Sandine and B.L. Geller. 1991. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 173: 6095-6100.
  • Valyasevi R., W.E. Sandine and B.L. Geller. 1994. Lactococcus lactis ssp. lactis C2 bacteriophage ski receptor involving rhamnose and glucose moieties in the cell wall. J. Dairy Sci. 77: 1-6.
  • Van Alpen L., L. Havekcs and B. Lugtenberg. 1977. Major outer membrane protein of Escherichia coli K12. Purification and in vitro activity of bacteriophage K3 and f-pilus conjugation. FEBS Letters 75: 285-290.
  • Vidaver A.K., R.K. Koski and J.L. van Etten. 1973. Bacteriophage φ6: lipid-containing virus of Pseudomonas phaseolicola. J. Virol. 11: 799-805.
  • Vogel H. and F. Jahnig. 1986. Models of the structure of outer-membrane proteins of Escherichia coli derived from raman-spectroscopy and prediction methods. J. Mol. Biol. 190: 191-199.
  • Wallenfels B. and K. Jann. 1974. The action of bacteriophage on two strains of Esherichia coli Ω8. J. Gen. Microbiol. 81: 131-144.
  • Weidel W. 1958. Bacterial viruses (with particular reference to adsorbtion/penetration). Ann. Rev. Microbiol. 12: 24-48.
  • Wilkinson S.G. 1996. Bacterial lipopolysaccharides - themes and variations. Prog. Lipid. Res. 35: 283-343.
  • Yasbin R.E., Y.C. Maino and F.E. Young. 1976. Bacteriophage resistance to Bacillus subtilis 168, W23, and interstrain transformants. J. Bact. 125: 1120-1126.
  • Young F.E. 1968. Requirement of glecosylated teichoic acid for adsorbtion of phage in Bacillus subtilis 168. Proc. Nat. Acad. Sci. 58: 2377-2384.
  • Yu F. and S. Mizushima. 1982. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K12 in the receptor function for bacteriophage T4. J. Bacteriol. 51: 423-434.
  • Yurewicz E.C., M.A. Ghalambor, D.H. Duckworth and E.C. Heath. 1971. Catalytic and molecular properties of a phage-induced capsular polysaccharide depolymerase. J. Biol. Chem. 246: 5607-5616.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f9222bcd-1cfd-4787-9f83-a16f17942a2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.