PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 73 | 3 |

Tytuł artykułu

Inhibition of natriuresis in median eminence polydipsia: Effects after intake of diets with different osmolalities and after hypertonic NaCl administration

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lesions in the hypothalamic median eminence (ME) induce polydipsia and polyuria in male rats. A first experiment was designed to examine the effect of salt consumption (standard 0.25% Na+ vs. low-salt 0.04% Na+ diet) on the fluid-electrolytic balance (plasma sodium, urinary sodium excretion, urine osmolality) and water intake of ME polydipsic animals. In the first 6 h post-surgery, the natriuretic response was higher in ME-lesioned animals than in control groups. At 24 h post-surgery, however, less sodium was excreted by ME rats fed with a standard salt diet (ME/SS), despite showing no decrease in salt intake, and they evidenced an increase in plasma sodium concentration and water intake. Urine osmolality was significantly higher in control animals than in either ME-lesioned group. In experiment 2, hypertonic NaCl administration (2 ml/2M) increased the polydipsic behavior of ME-lesioned but not control rats (day 2). Animals deprived of food/salt showed a significant reduction (on day 2) in the initial (day 1) polydipsia, which increased on day 3 when the animals had access to a standard-salt diet. These results suggest that the reduced natriuretic response and the consequent sodium retention observed in ME animals may exacerbate the hydromineral imbalance of this polydipsic syndrome.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

73

Numer

3

Opis fizyczny

p.326-337,fig.,ref.

Twórcy

autor
  • Department of Psychobiology, University of Granada, Granada, Spain
autor
  • Department of Psychobiology, University of Granada, Granada, Spain
autor
  • Department of Psychobiology, University of Granada, Granada, Spain

Bibliografia

  • Antunes-Rodrigues J, Turrin MQ, Gutkowska J, McCann SM (1990) Blockade of volume expansion-induced release of atrial natriuretic peptide by median eminence lesions in the rat. Braz J Med Biol Res 23: 355-359.
  • Antunes-Rodrigues J, Ramalho MJ, Reis LC, Menani JV, Turrin MQ, Gutkowska J, McCann SM (1991) Lesions of the hypothalamus and pituitary inhibit volume expansion- induced release of atrial natriuretic peptide. Proc Natl Acad Sci U S A 88: 2956-2960.
  • Antunes-Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM (2004) Neuroendocrine control of body fluid metabolism. Physiol Rev 84: 169-208.
  • Balment RJ, Jones IC, Henderson IW, Oliver JA (1976) Effects of adrenalectomy and hypophysectomy on water and electrolyte metabolism in male and female rats with inherited hypothalamic diabetes insipidus (Brattleboro strain). J Endocrinol 71: 193-217. Bealer SL (1983) Sodium excretion following lesions of preoptic recess periventricular tissue in the rat. Am J Physiol 244: R815-822.
  • Bernal A, Mahia J, Puerto A (2007) Oxytocin, water intake, and food sodium availability in male rats. Horm Behav 52: 289-296.
  • Bernal A, Mahia J, Garcia del Rio C, Puerto A (2010) Oxytocin Polyuria and Polydipsia is blocked by NaCl administration in food-deprived male rats. J Neuroendocrinol 22: 1043-1051.
  • Blackburn RE, Samson WK, Fulton RJ, Stricker EM, Verbalis JG (1995) Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats. Am J Physiol 269: R245-51.
  • Blessing WW, Sved AF, Reis DJ (1982) Destruction of nora- drenergic neurons in rabbit brainstem elevates plasma vasopressin, causing hypertension. Science 217: 661¬663.
  • Blessing WW, Willoughby JO (1985) Excitation of neuronal function in rabbit caudal ventrolateral medulla elevates plasma vasopressin. Neurosci Lett 58: 189-194.
  • Conrad KP, Gellai M, North WG, Valtin H (1993) Influence of oxytocin on renal hemodynamics and sodium excre¬tion. Ann N Y Acad Sci 689: 346-362.
  • De Luca LA Jr, Barbosa SP, Menani JV (2003) Brain sero¬tonin blockade and paradoxical salt intake in rats. Neuroscience 121: 1055-1061.
  • Elias LL, Antunes-Rodrigues J, Elias PC, Moreira AC (1997) Effect of plasma osmolality on pituitary-adrenal responses to corticotropin-releasing hormone and atrial natriuretic peptide changes in central diabetes insipidus. J Clin Endocrinol Metab 82: 1243-1247.
  • Flier JS, Maratos-Flier E (1998) Obesity and the hypothala¬mus: novel peptides for new pathways. Cell 92: 437¬440.
  • Fried LF, Palevsky PM (1997) Hyponatremia and hyperna- tremia. Med Clin North Am 81: 585-609.
  • Friedman SM, Webber WA, Scherrer HF, Friedman CL (1958) Changes in salt and water distribution, blood pressure, and adrenal activity following neurohypophyseal denervation in the rat. Can J Biochem Physiol 36: 425-431.
  • Friedman SM, Sreter FA, Nakashima M, Friedman CL (1962) Adrenal cortex and neurohypophyseal deficiency in salt and water homeostasis of rats. Am J Physiol 203: 697-701.
  • Geerling JC, Loewy AD (2008) Central regulation of sodium appetite. Exp Physiol 93: 177-209.
  • Grossman SP, Grossman L, Halaris A (1977) Effects on hypo¬thalamic and telencephalic NE and 5-HT of tegmental knife cuts that produce hyperphagia or hyperdipsia in the rat. Pharmacol Biochem Behav 6: 101-106.
  • Hakansson ML, Hulting AL, Meister B (1996) Expression of leptin receptor mRNA in the hypothalamic arcuate nucle- us--relationship with NPY neurones. Neuroreport 7: 3087-3092.
  • Hennessy JW, Grossman SP, Kanner M (1977) A study of the etiology of the hyperdipsia produced by coronal knife cuts in the posterior hypothalamus. Physiol Behav 18: 73-80.
  • Huang W, Lee S, Sjoquist M (1995) Natriuretic role of endogenous oxytocin in male rats infused with hyper¬tonic NaCl. Am J Physiol 37: R634-R640.
  • Krauth J (1988) Distribution-Free Statistics: An Application- Oriented Approach. Elsevier, Amsterdam, NL.
  • Mahia J, Puerto A (2006) Lesions of tuberomammillary nuclei induce differential polydipsic and hyperphagic effects. Eur J Neurosci 23: 1321-1331.
  • Mahia J, Bernal A, Puerto A (2007) Dipsogenic potentiation by sodium chloride but not by sucrose or polyethylene glycol in tuberomammillary-mediated polydipsia. Exp Brain Res 183: 27-39.
  • Mahia J, Bernal A, Puerto A (2008) NaCl preference and water intake effects of food availability in median emi¬nence polydipsia. Neurosci Lett 447: 7-11.
  • Mahia J, Bernal A, Garcia Del Rio C, Puerto A (2009) The natriuretic effect of oxytocin blocks medial tuberomam- millary polydipsia and polyuria in male rats. Eur J Neurosci 29: 1440-1446.
  • Marubayashi U, McCann SM, Antunes-Rodrigues J (1987) Factors controlling adrenal weight and corticosterone secretion in male rats as revealed by median eminence lesions and pharmacological alteration of prolactin secre¬tion. Brain Res Bull 19: 511-518.
  • Mc CS, Brobeck JR (1954) Evidence for a role of the supraopticohypophyseal system in regulation of adreno- corticotrophin secretion. Proc Soc Exp Biol Med 87: 318-324.
  • McCann SM, Franci CR, Antunes-Rodrigues J (1989) Hormonal control of water and electrolyte intake and output. Acta Physiol Scand Suppl 583: 97-104.
  • McCann SM, Franci CR, Favaretto AL, Gutkowska J, Antunes- Rodrigues J (1997) Neuroendocrine regulation of salt and water metabolism. Braz J Med Biol Res 30: 427-441.
  • McCann SM, Gutkowska J, Antunes-Rodrigues J (2003) Neuroendocrine control of body fluid homeostasis. Braz J Med Biol Res 36: 165-181.
  • McKinley MJ, Denton DA, Nelson JF, Park MH, Smith RS, Weisinger RS, Wright RD (1982) Natriuresis induced by dehydration. A cerebrally mediated homeostatic response. Clin Exp Pharmacol Physiol 9: 566.
  • McKinley, MJ, Denton DA, Nelson JF, Weisinger RS (1983) Dehydration induces sodium depletion in rats, rabbits and sheep. Am J Physiol 245: R287-R292.
  • McKinley MJ, McBurnie MI, Mathai ML (2001) Neural mechanisms subserving central angiotensinergic influ¬ences on plasma renin in sheep. Hypertension 37: 1375¬1381.
  • Morris M, McCann SM, Orias R (1976) Evidence for hor¬monal participation in the natriuretic and kaliuretic responses to intraventricular hypertonic saline and norepi¬nephrine. Proc Soc Exp Biol Med 152: 95-98.
  • Morris M, McCann SM, Orias R (1977) Role of transmitters in mediating hypothalamic control of electrolyte excre¬tion. Can J Physiol Pharmacol 55: 1143-1154.
  • Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York, NY.
  • Ramos JM, Castillo ME, Puerto A (1988) Submandibular and parotid salivary secretion after electrolytic lesioning of the brainstem nucleus parvocellularis in the rat. Physiol Behav 44: 173-180.
  • Rolls BJ (1970) Drinking by rats after irritative lesions in the hypothalamus. Physiol Behav 5: 1385-1393.
  • Rose BD (1984) Clinical Physiology of Acid-Base and Electrolyte Disorders. McGraw Hill, New York, NY.
  • Schallert T, Leach LR, Braun JJ (1978) Saliva hypersecre¬tion during aphagia following lateral hypothalamic lesions. Physiol Behav 21: 461-463.
  • Sjoquist M, Lee SL, Hansell P (2005) CNS-induced natri- uresis, neurohypophyseal peptides and renal dopamine and noradrenaline excretion in prehypertensive salt sensi¬tive Dahl rats. Exp Physiol 90: 847-853.
  • Smith RW, Mc CS (1962) Alterations in food and water intake after hypothalamic lesions in the rat. Am J Physiol 203: 366-370.
  • Verbalis JG (2002) Management of disorders of water metabolism in patients with pituitary tumors. Pituitary 5: 119-132.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f91a78b1-1a1e-4950-b0e1-2aaa38f6485e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.