PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 4 |

Tytuł artykułu

The effect of choline-stabilized orthosilic acid application on tomato grown under increasing Mn stress

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study has been to assess the efficiency of choline-stabilized orthosilic acid (ch-OSA; bioavailabile form of silicon) application under increasing intensity of manganese stress on the chemical composition of plants and yielding of tomato (Lycopersicon esculentum Mill. cv. Alboney F1 and cv. Emotion F1). Plants were grown in rockwool with the application of a nutrient solution of the following chemical composition (mg dm-3): N-NH4 2.2, N-NO3 230, P 50, K 430, Ca 145, Mg 65, Cl 35, S-SO4 120, Fe 2.48, Zn 0.50, Cu 0.07; pH 5.50, EC 3.00 mS cm-1. The following manganese levels in the nutrient solution were tested (mg dm-3): 9.6 and 19.2. The effect of ch-OSA application (at a concentration of Si equal 0.3 mg dm-3 of the nutrient solution) was investigated at both Mn-levels. The ch-OSA application alleviated Mn toxicity by increasing the biomass production in the Mn-low variant (+ 8.2% for Alboney F1 and 16.8% for Emotion F1, the differences being significant for Emotion F1), whereas the ch-OSA application in the Mn-high variant did not influence the plant yielding. All the factors affected the plant nutrient status and the chemical composition of tomato fruits. The chemical composition of leaves depended on (means of all the studied combinations): Mn (K, Na) and ch-OSA nutrition (N, Mg, Na), cultivar (for P, K, Ca, Na), but in the case of fruits significant differences were found between Mn (N, P, Ca, Mg) and ch-OSA nutrition (N, Mg, Na) and cultivar (N, P). In both Mn-levels, visual symptoms of manganese toxicity appeared on plants – in the Mn-high variant, they were observed after 4 weeks, while in the case of the Mn-low variant - after 10 weeks of exposure to strong Mn-stress. Treatment with ch-OSA at both of the studied Mn levels did not prevent the development of visual toxicity symptoms on the plants.

Wydawca

-

Rocznik

Tom

20

Numer

4

Opis fizyczny

p.897-910,fig.,ref.

Twórcy

autor
  • Chair of Plants Nutrition, Poznań University of Life Sciences, Zgorzelecka 4, 60-198 Poznan, Poland
autor
  • Chair of Plant Nutrition, Poznan University of Life Sciences, Poznan, Poland
autor
  • Chair of Plant Nutrition, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • Aziz T., Ahmad M., Rahmatullach M. 2002. Silicon nutrition and crop production: a review. Pak. J. Agri. Sci., 39(3): 181-187.
  • Chen W., Yao X., Cai K., Chen J. 2011. Silicon alleviated drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol., Trace Elem. Res., 141(1): 67-76. DOI: 10.1007/s12011-010-8742-x
  • Epstein E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641-664.
  • European Foo d Safet y Autho rit y (EFSA) 2009. Scientific opinion of the panel on food additives and nutrient sources added to food on choline-stabilised orthosilicic acid added for nutritional purposes to food supplements following a request from the European Commission. EFSA J., 948: 1-23.
  • Gunes A., Inal A., Bagci E.G., Coban S., Pilbeam D.J. 2007. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci Hort., 113: 113-119.
  • GUS 2012. Condition of households in 2011, in the light of the results of the household budget survey. The Main Statistical Office in Poland (GUS), Warszawa. [http://www.stat.gov.pl /cps/rde/xbcr/gus/WZ_budzety_gospodarstw_domowych_w_2011.pdf]
  • Hiradate S., Taniguchi S., Sakurai K. 1998. Aluminum speciation in aluminum-silica solutions and potassium chloride extracts of acidic soils. Soil Sci. Soc. Am. J., 62: 630-636. DOI: 10.2136/sssaj1998.03615995006200030012x
  • Horiguchi T. 1987. Mechanism of manganese toxicity and tolerance of plants. II. Deposition of oxidized manganese in plant tissue. Soil Sci. Plant Nutr., 33: 595-606. DOI: 10.1080/00380768.1987.10557608
  • Horst W.J., Marschner H. 1978. Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil, 50: 287-303. DOI: 10.1007/BF02107179
  • Horst W.J., Fecht, M., Naumann, A., Wiss emeier, A.H., Maier, P. 1999. Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J. Plant Nutr Soil Sci., 162: 263-274.
  • Iwasaki K., Maier P., Fecht M., Horst W.J. 2002. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 238: 281-288. DOI: 10.1023/A: 1014482911196
  • Iwasaki K., Matsumura A. 1999. Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa). Soil Sci. Plant Nutr., 45: 909-920. DOI: 10.1080/00380768.1999.10414340
  • Jarosz Z. 2013. The effect of silicon application and type of substrate on yield and chemical composition of leaves and fruit of cucumber. J. Elem., 18(3): 403-414. DOI: 10.5601/ jelem.2013.18.3.05
  • Jarosz Z. 2014. The effect of silicon application and type of medium on yielding and chemical composition of tomato. Acta Sci. Pol., Hort. Cult., 13(4): 171-183.
  • Kaya C., Tuna L., Higgs D. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr., 29: 1469-1480. DOI: 10.1080/01904160600837238
  • Kleiber T., Borowiak K., Budka A., Kayzer D. 2014. Relations between yield, nutrient and water status, and gas exchange parameters of tomato at various Mn concentrations. Acta Biol. Cracov. Ser. Bot., 56(2): 1-9. DOI: 10.2478/abcsb-2014-0030
  • Kleiber T. 2014a. The effect of choline-stabilized orthosilicic acid application under Mn excessive nutrition on yielding of hydroponically grown lettuce ( Lactuca sativa L.). Aparatura Badawcza i Dydaktyczna, 3: 219-226.
  • Kleiber T. 2014b. Changes of nutrient contents in tomato fruits under the influence of increasing intensity of manganese nutrition. Ecol. Chem. Eng. S., 21(2): 297-307. DOI: 10.2478/eces-2014-0023
  • Kleiber T., Krzesiński W., Przygocka-Cyna K., Spiżews ki T. 2015. The response of hydroponically grown lettuce under Mn stress on differentiated application of silica sol. J. Elem., 20(3). DOI: 10.5601/jelem.2015.20.1.806
  • Lee J. S., Park J.H., Suk Han K. 2000. Effects of potassium silicate on growth, photosynthesis and inorganic ion absorption in cucumber hydroponics. J. Kor. Soc. Hort. Sci., 45(5): 480-484.
  • Liang Y.C. 1999. Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil, 209: 217-224. DOI: 10.1023/A: 1004526604913
  • Lobato A.K.S., Silva Guedes E.M., D. J. Marques, de Oliveira Neto C.F. 2013. Silicon: a benefic element to improve tolerance in plants exposed to water deficiency. responses of organisms to water stress. DOI: http://dx.doi.org/10.5772/53765
  • Ma J., Takahashi E. 1993. Interaction between calcium and silicon in water-cultured rice plants. Plant Soil, 148: 107-113. DOI: 10.1007/BF02185390
  • Maksimović D.J., Bogdanovic J., Maksimović V., Nikolic M. 2007. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutr. Soil Sci., 170: 739-744. DOI: 10.1002/jpln.200700101
  • Maksimović D.J., Mojović M., Maksimović V., Römheld V., Nikolic M. 2012. Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J. Exp. Bot., 63(7): 2411-2420. DOI: 10.1093/jxb/err359
  • Matoh T, Kairusm ee P, Takahashi E. 1986. Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci. Plant Nutr., 32: 295-304. DOI: 10.1080/00380768 .1986.10557506
  • Rogalla H., Römheld V. 2002. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ., 25(4): 549-555. DOI: 10.1046/j.1365-3040.2002.00835.x
  • Sacała E. 2009. Role of silicon in plant resistance to water stress. J. Elem., 14: 619-630.
  • Sawiniak W. 1990. Study on the application of iron(III0 hydroxide in removal of large quantities of iron and manganese from groundwater. Zesz. Nauk. P. Śl. 1053, Inż. Środ., 34. (in Polish)
  • Shi G., Qings heng C., Liu C., Li Wu 2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul., 61: 45-52. DOI: 10.1007/s10725-010-9447-z
  • Spector T.D, Calomm e M.R., Anderson S.H., Clement G., Bevan L., Demeester N., Swaminathan R., Jugdaohsingh R., Vanden Berghe D.A., Powell J.J. 2008. Choline-stabilized orthosilicic acid supplementation as an adjunct to Calcium/Vitamin D3 stimulates markers of bone formation in osteopenic females: a randomized, placebo-controlled trial. BMC Musculoskeletal Disorders, 9:85. DOI:10.1186/1471-2474-9-85
  • Stamatakis A., Papadantonakis N., Savvas D. 2003. Effects of silicone and salinity on fruit yield and quality of tomato grown hydroponically. Acta Hort., 609: 141-149.
  • Toresano-Sanchez T.F., Garcia A.V., Ferre F.C. 2012. Effect of the application of silicon hydroxide on yield and quality of cherry tomato. J. Plant Nutr., 35(4): 567-590. DOI:10.1080/01904167.2012.644375
  • Watanabe S., Fujiwara T., Yoneyama T., Hayashi H. 2001. Effects of silicon nutrition on metabolism and translocation of nutrients in rice plants. Develop. Plant Soil Sci., 92: 174-175. DOI: 10.1007/0-306-47624-X_84
  • Wiss emeier A.H., Horst W. J. 1992. Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil, 143: 299-309. DOI: 10.1007/BF00007886

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-f8b4a411-ea8e-4b1d-80d3-ddc7b230a90e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.