PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 10 |

Tytuł artykułu

VaCBF1 from Vitis amurensis associated with cold acclimation and cold tolerance

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To understand cold acclimation and cold tolerance in Vitis, we isolated a C-repeat binding factor 1 (CBF1) transcriptional activator from cold-sensitive Vitis vinifera ‘Manicure Finger’ and cold-tolerant wild Vitis amurensis. Under cold stress, the CBF1 transcript accumulation of V. amurensis increased, whereas that of V. vinifera showed no significant change. The transcript levels of VaCBF1 in the roots, stems, leaves, and petioles under cold stress were up-regulated in a time-dependent manner. The transcript level of VaCBF1 in the leaves was induced by salinity stress or by exogenous abscisic acid and salicylic acid. The presence of the cis-elements MBS, MYB, and MYC in the VaCBF1 promoter suggests that this promoter is a component of the CBF transduction pathway, which is involved in plant response to cold stress. The overexpression of VaCBF1 increased the cold tolerance of transgenic tobacco at −4 °C. The transcript level of the downstream target gene NtERD10D appeared in the transgenic lines under normal conditions, whereas that of NtERD10D and NtDREB3 improved under low temperature. We suggest that VaCBF1 enhances stress tolerance by increasing antioxidant activities and promoting downstream target gene expression.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

10

Opis fizyczny

p.2975-2984,fig.,ref.

Twórcy

autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
  • Department of Horticulture, Heilongjiang Academy of Agricultural Science, Harbin 150069, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
autor
  • Department of Horticulture, Heilongjiang Academy of Agricultural Science, Harbin 150069, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
autor
  • Department of Horticulture, Heilongjiang Academy of Agricultural Science, Harbin 150069, China
autor
  • Department of Horticulture, Heilongjiang Academy of Agricultural Science, Harbin 150069, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
autor
  • College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China

Bibliografia

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 50-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713
  • Benedict C, Geisler M, Trygg J, Huner N, Hurry V (2006a) Consensus by democracy. using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. Plant Physiol 141:1219–1232
  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V (2006b) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272
  • Chinnusamy V, Zhu J (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451
  • El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57:2455–2469
  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690
  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153
  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor coldresponse pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917
  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106
  • Lagonigro MS, De Cecco L, Carninci P, Di Stasi D, Ranzani T, Rodolfo M, Gariboldi M (2004) CTAB-urea method purifies RNA from melanin for cDNA microarray analysis. Pigment Cell Res 17:312–315
  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328
  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406
  • Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838
  • Medina Jn, Bargues M, Terol J, Pe´rez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470
  • Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci U S A 104:21002–21007
  • Polashock JJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hort Sco 135(1):40–48
  • Puhakainen T, Li C, Boije-Malm M, Kangasjarvi J, Heino P, Palva ET (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol 136:4299–4307
  • Sequeira L, Mineo L (1966) Partial purification and kinetics of indoleacetic acid oxidase from tobacco roots. Plant Physiol 41:1200–1208
  • Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360
  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223
  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040
  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50:571–599
  • Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660
  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Method Enzymol 428:419–438
  • Vagujfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514
  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759
  • Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D (2011) Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestica) results in shortday induced dormancy and increased cold hardiness. Planta 233:971–983
  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421
  • Xiao H, Tattersall EA, Siddiqua MK, Cramer GR, Nassuth A (2008) CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ 31:1–10
  • Xu ML, Jiang JF, Ge L, Xu YY, Chen H, Zhao Y, Bi YR, Wen JQ, Chong K (2005) FPF1 transgene leads to altered flowering time and root development in rice. Plant Cell Rep 24:79–85
  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349
  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264
  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94
  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C, Liu Y, Zong JM, Li HY (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABAindependent pathways. Planta 233:219–229

Uwagi

rekord w opracowaniou

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f8a4b188-de25-409c-9728-c2294773aaf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.