PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 06 |

Tytuł artykułu

Soluble carbohydrates in developing and mature diaspores of polar Caryophyllaceae and Poaceae

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The accumulation of soluble carbohydrates in maturing diaspores of flowering plants comprising Arctic populations of Cerastium alpinum, indigenous Antarctic species Colobanthus quitensis and Deschampsia antarctica, and cosmopolitan Poa annua from the Antarctic was investigated. For comparative purposes, the diaspores of two species of flowering plants growing in the area of Olsztyn (Poland), Poa annua (Poaceae) and Cerastium arvense (Caryophyllaceae) were used. A qualitative and quantitative analysis of soluble carbohydrates conducted by means of high-resolution gas chromatography showed that monosaccharides (glucose and fructose), maltose and sucrose, raffinose, myo-inositol and galactinol are ubiquitous in developing and mature diaspores among investigated species. Moreover, D. antarctica and P. annua caryopses additionally contained stachyose and 1-kestose; the seeds of Caryophyllaceae studied were found to contain D-pinitol and D-ononitol. The development and maturation of the seeds of polar Caryophyllaceae and Poaceae were accompanied by the changes in the concentration of their soluble carbohydrates. During maturation, seeds accumulated galactinol and raffinose family of oligosaccharides (RFOs), except C. quitensis. Although seeds of the studied Caryophyllaceae contained D-pinitol and lower amounts of D-ononitol, they did not accumulate α-D-galactoside derivatives of mentioned cyclitols. P. annua caryopses, occurring in the Antarctic, were found to accumulate considerably higher amounts of sucrose and 1-kestose than those developed in Olsztyn.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

06

Opis fizyczny

fig.,ref.

Twórcy

  • Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
autor
  • Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
  • Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
  • Department of Antarctic Biology and Polish Antarctic Station “H. Arctowski”, Institute of Biochemistry and Biophysics PAS, Ustrzycka 10/12, 02-141, Warsaw, Poland
autor
  • Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland

Bibliografia

  • Amiard V, Morvan-Bertrand A, Billard J-P, Huault C, Keller F, Prud’homme MP (2003) Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass. Plant Physiol 132:2218–2229. doi:10.1104/pp.103.022335
  • Barnes PJ (1982) Composition of cereal germ preparations. Z Lebensm Unters Forsch 174:467–471
  • Blöchl A, Peterbauer T, Hofmann J (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228:99–110. doi:10.1007/s00425-008-0722-4
  • Borisjuk L, Rolletschek H, Wobus U, Weber H (2003) Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. J Exp Bot 54(382):503–512. doi:10.1093/jxb/erg051
  • Borisjuk L, Rolletschek H, Radchuk R, Weschke W, Wobus U, Weber H (2004) Seed development and differentiation: a role for metabolic regulation. Plant Biol 6:375–386. doi:10.1055/s-2004-817908
  • Convey P (1996) Reproduction of Antarctic flowering plants. Antarct Sci 8:127–134. doi:10.1017/S0954102096000193
  • Dos Santos TB, Budzinski IG, Marur CJ, Petkowicz CL, Pereira LF, Vieira LG (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448. doi:10.1016/j.plaphy. 2011.01.023
  • ElSayed AI, Rafudeen MS, Golldack D (2014) Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biol 16:1–8. doi:10.1111/plb.12053
  • Giełwanowska I, Bochenek A, Gojło E, Górecki R, Kellmann W, Pastorczyk M, Szczuka E (2011) Biology of reproduction of Colobanthus quitensis (Kunth) Bartl. Pol Polar Res 32(2):139–155. doi:10.2478/v10183-011-0008-6
  • Gomes CI, Obendorf RL, Horbowicz M (2004) myo-Inositol, D-chiroinositol, and D-pinitol synthesis, transport, and galactoside formation in soybean explants. Crop Sci 45(2):1312–1319. doi:10.2135/cropsci2004.0247
  • Górecki RJ, Piotrowicz-Cieślak AI, Lahuta LB, Obendorf RL (1997) Soluble carbohydrates in desiccation tolerance of yellow lupin seeds during maturation and germination. Seed Sci Res 7:107–115. doi:10.1017/S0960258500003445
  • Górecki RJ, Lahuta LB, Hedley C, Jones A (2000) Soluble sugars in maturing pea seeds of different lines in relation to desiccation tolerance. In: Black M, Bradford KJ, Vasquez-Ramos J (eds) Seed Biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds. CAB International, Merida, pp 67–74
  • Himuro Y, Ishiyama K, Mori F, Gondo T, Takahashi F, Shinozaki K, Kobayashi M, Akashi R (2014) Arabidopsis galactinol synthase AtGolS2 improves drought tolerance in the monocot Brachypodium distachyon. J Plant Physiol 171:1127–1131. doi:10.1016/j.jplph.2014.04.007
  • Horbowicz M, Obendorf RL (1994) Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols: review and survey. Seed Sci Res 4:385–405. doi:10.1017/S0960258500002440
  • Horbowicz M, Obendorf RL (2005) Fagopyritol accumulation and germination of buckwheat seeds matured at 15, 22 and 30 ℃. Crop Sci 45:1264–1270
  • Jones DA, DuPont MS, Ambrose MJ, Frias J, Hedley CL (1999) The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Sci Res 9:305–310. doi:10.1017/S0960258599000318
  • Lahuta LB (2006) Biosynthesis of raffinose family oligosaccharides and galactosyl pinitols in developing and maturing seeds of winter vetch (Vicia villosa Roth.). Acta Soc Bot Pol 75(3):219–227. doi:10.5586/asbp.2006.026
  • Lahuta LB, Dzik T (2011) D-chiro-Inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum. J Plant Physiol 168:352–358. doi:10.1016/j.jplph.2010.07.027
  • Lahuta LB, Goszczyn´ska J (2009) Inhibition of raffinose family oligosaccharides and galactosyl pinitols breakdown delays germination of winter vetch (Vicia villosa Roth.) seeds. Acta Soc Bot Pol 78(3):203–208. doi:10.5586/asbp.2009.025
  • Lahuta LB, Goszczyńska J (2010) Cyclitols in maturing grains of wheat, triticale and barley. Acta Soc Bot Pol 79(3):181–187. doi:10.5586/asbp.2010.023
  • Lahuta LB, Łogin A, Rejowski A, Socha A, Zalewski K (2000) Influence of water deficit on the accumulation of sugars in developing field bean (Vicia faba var. minor) seeds. Seed Sci Technol 28:93–100
  • Lahuta LB, Górecki RJ, Gojło E, Horbowicz M (2005a) Differences in accumulation of soluble α-D-galactosides during seed maturation of several Vicia species. Acta Physiol Plant 27(2):163–171. doi:10.1007/s11738-005-0020-8
  • Lahuta LB, Górecki RJ, Horbowicz M (2005b) High concentrations of D-pinitol or D-chiro-inositol inhibit the biosynthesis of raffinose family oligosaccharides in maturing smooth tare (Vicia tetrasperma [L.] Schreb.) seeds. Acta Physiol Plant 27(4A):505–513. doi:10.1007/s11738-005-0056-9
  • Lahuta LB, Horbowicz M, Gojło E, Goszczyńska J, Górecki RJ (2005c) Exogenously applied D-pinitol and D-chiro-inositol modifies the accumulation of α-D-galactosides in developing tiny vetch (Vicia hirsuta [L.] S.F. Gray) seeds. Acta Soc Bot Pol 74(4):287–296. doi:10.5586/asbp.2005.037
  • Lahuta LB, Goszczyńska J, Horbowicz M (2010a) Seeds α-D-galactosides of selected Vicia species and enzymes involved in their biosynthesis. Acta Biol Cracov Bot 52(1):27–35. doi:10.2478/v10182-010-0004-x
  • Lahuta LB, Goszczyńska J, Horbowicz M, Hołdyński C, Górecki RJ (2010b) Cyclitols affect accumulation of α-D-galactosides in developing Vicia seeds. Acta Physiol Plant 32:933–942. doi:10.1007/s11738-010-0481-2
  • Lahuta LB, Święcicki W, Dzik T, Górecki RJ, Horbowicz M (2010c) Feeding stem-leaf-pod explants of pea (Pisum sativum L.) with D-chiro-inositol or D-pinitol modifies composition of α-D-galactosides in developing seeds. Seed Sci Res 20((4):213–221. doi:10.1017/S096025851000022X
  • Li X, Zhuo JJ, Jing Y, Liu X, Wang XF (2011) Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. J Plant Physiol 168:1761–1770. doi:10.1016/j.jplph.2011.04.006
  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66(13):2007–2023. doi:10.1007/s00018-009-0002-x
  • Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci 150:1–19. doi:10.1016/S0168-9452(99)00150-8
  • Ma JM, Horbowicz M, Obendorf RL (2005) Cyclitol galactosides in embryos of buckwheat stem-leaf-seed explants fed D-chiroinositol, myo-inositol or D-pinitol. Seed Sci Res 15:329–338. doi:10.1079/SSR2005221
  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. doi:10.1104/pp.108.122465
  • Obendorf RL,GóreckiRJ (2012) Soluble carbohydrates in legume seeds. Seed Sci Res 22:219–242. doi:10.1017/S0960258512000104
  • Obendorf RL, Odorcic S, Ueda T, Coseo MP, Vasallo E (2004) Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression. Seed Sci Res 14:321–333. doi:10.1079/SSR2004186
  • Obendorf RL, Horbowicz M, Lahuta LB (2012) Characterization of sugars, cyclitols and galactosyl cyclitols in seeds by GC. In: Preedy V (ed) Food and nutritional compounds in focus No 3. dietary sugars: chemistry, analysis, function and effects. King’s College London, Royal Society of Chemistry Publishing, pp 167–185
  • Østrem L, Rapacz M, Jørgensen M, Höglind M (2011) Effect of developmental stage on carbohydrate accumulation patterns during winter of timothy and perennial ryegrass. Acta Agric Scandinavica Ser B Soil Plant Sci 61:153–163. doi:10.1080/09064711003652522
  • Pastorczyk M, Giełwanowska I, Lahuta LB (2014) Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling. Acta Physiol Plant 36:1771–1780. doi:10.1007/s11738-014-1551-7
  • Peterbauer T, Richter A (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Sci Res 11:185–197. doi:10.1079/SSR200175
  • Peterbauer T, Lahuta LB, Blöchl A, Mucha J, Jones DA, Hedley CL, Górecki RJ, Richter A (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol 127:1764–1772. doi:10.1104/pp.010534
  • Peterbauer T, Mach L, Mucha J, Richter A (2002a) Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta 215:839–846. doi:10.1007/s00425-002-0804-7
  • Peterbauer T, Mucha L, Mach L, Richter A (2002b) Chain elongation of raffinose in pea seeds. Isolation, characterization and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. J Biol Chem 277:194–200. doi:10.1074/jbc.M109734200
  • Peterbauer T, Karner U, Mucha J, Mach L, Jones DA, Hedley CL, Richter A (2003) Enzymatic control of the accumulation of verbascose in pea seeds. Plant Cell Environ 26:1385–1391. doi:10.1046/j.0016-8025.2003.01063.x
  • Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A (2014) Spatio-temporal dynamics of fructans metabolism in developing barley grains. Plant Cell 26(9):3728–3744. doi:10.1105/tpc.114.130211
  • Philipp M, Böcher J, Matsson O, Woodell SRJ (1990) A quantitative approach to the sexual reproductive biology and population structure in some arctic flowering plants Dryas integrifolia,
  • Silene aucalis. Ranunculus nivalis, Meddeletser om Grønland, Bioscience 34 Piro_znikow E (1993) Populations of Saxifraga oppositifolia L., in Spitsbergen tundra in different ecological conditions. Pol. Polar Res 14(4):355–382
  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost resistance in perennial grasses adapted to cold climates. Plant Sci 180:69–77. doi:10.1016/j.plantsci.2010.07.011
  • Saravitz DM, Pharr DM, Carter TE Jr (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiol 83:185–189
  • Song J, Liu J, Weng M, Huang Y, Luo L, Cao P, Sun H, Liu J, Zhao J, Feng D, Wang B (2013) Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants. Gene 513:118–127. doi:10.1016/j.gene.2012.10.058
  • Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant, Cell Environ 24:429–438. doi:10.1046/j.1365-3040.2001.00690.x
  • Sun Z, Qi X, Wang Z, Li P, Wu Ch, Zhang H, Zhao Y (2013) Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses. Plant Physiol Biochem 69:82–89. doi:10.1016/j.plaphy.2013.04.009
  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 37:429–443. doi:10.1016/j.envexp bot.2009.09.004
  • Ueda T, Coseo MP, Harrell TJ, Obendorf RL (2005) A multifunctional galactinol synthase catalyzes the synthesis of fagopyritol A1 and fagopyritol B1 in buckwheat seed. Plant Sci 168:681–690. doi:10.1016/j.plantsci.2004.09.029
  • Valluru R, Van den Ende W (2011) myo-Inositol and beyond - emerging networks under stress. Plant Sci 181:387–400. doi:10. 1016/j.plantsci.2011.07.009
  • Verspreet J, Cimini S, Vergauwen R, Dornez E, Locato V, Le Roy K, De Gara L, Den Van, Ende W, Delcour JA, Courtin CM (2013) Fructan metabolism in developing wheat (Triticum aestivum L.) kernels. Plant Cell Physiol 54(12):2047–2057. doi:10.1093/pcp/pct144
  • Wang D, Yao W, Song Y, Liu W, Wang Z (2012) Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza. J Plant Physiol 169:1838–1848. doi:10.1016/j.jplph.2012.07.015
  • Weber H, Heim U, Golombek S, Borisjuk L, Wobus U (1998) Assimilate uptake and the regulation of seed development. Seed Sci Res 8:331–345. doi:10.1017/S0960258500004268
  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279. doi:10.1146/annurev.arplant.56.032604.144201
  • Yoshida M, Abe J, Moriyama M, Kuwabara T (1998) Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. Physiol Plant 103:8–16. doi:10.1034/j.1399-3054.1998.1030102.x
  • Zalewski K, Lahuta LB, Horbowicz M (2001) The effect of soil drought on the composition of carbohydrates in yellow lupin seeds and triticale kernels. Acta Physiol Plant 23(1):73–78. doi:10.1007/s11738-001-0025-x
  • Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W (2015) A wheat 1FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytol 205(1):293–305. doi:10.1111/nph.13030
  • Zhao T-Y, Martin D, Meeley RB, Downie B (2004a) Expression of the maize GALACTINOL SYNTHASE gene family: (II) Kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells. Physiol Plant 121:647–655. doi:10.1111/j.1399-3054.2004.00368.x
  • Zhao T-Y, Thacker R, Corum JW, Snyder JC, Meeley RB, Obendorf RL, Downie B (2004b) Expression of the maize GALACTINOL SYNTHASE gene family: (I) Expression of two different genes during seed development and germination. Physiol Plant 121:634–646. doi:10.1111/j.1399-3054.2004.00367.x
  • Zhuo C, Wang T, Lu S, Zhao Y, Li X, Guo Z (2013) A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses. Physiol Plant 149:67–78. doi:10.1111/ppl.12019
  • Zuther E, Büchel K, Hundertmark M, Stitt M, Hincha DK, Heyer AG (2004) The role of raffinose in the cold acclimation response of Arabidopsis thaliana. FEBS Lett 576:169–173. doi:10.1016/j. Febslet.2004.09.006

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f89a016f-b893-44bf-ba02-2180993792d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.