PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 10 |
Tytuł artykułu

Abscisic acid increases leaf starch content of polyethylene glycol-treated wheat seedlings by temporally increasing transcripts of genes encoding starch synthesis enzymes

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The molecular mechanism of starch synthesis regulated by abscisic acid (ABA) under water deficiency in plants was explored in this study. Starch content in leaves of wheat seedlings hydroponically grown in full-strength Hoagland solution increased quickly, however, 15 % polyethylene glycol (PEG)-induced water deficiency significantly inhibited starch content. ABA treatment markedly alleviated starch content inhibition in the leaf organ of wheat seedlings suffering from PEG-induced water deficiency. The expression levels of the starch biosynthesis enzyme genes were measured using quantitative real-time polymerase chain reaction analysis. Under PEG-induced water deficiency conditions, exogenous ABA significantly enhanced transcript levels of many starch biosynthesis enzyme genes at different time points, including TaAGPS2 at 1, 2, 3, and 4 days; TaAGPL2 at 1, 4, and 5 days; TaGBSSII at 2, 3, and 4 days; TaSSI at 1, 3, and 4 days; TaSSIIIb at 1 and 5 days; TaSSIV at 1, 2, and 3 days; TaBEIIa at 1 and 5 days; TaPHOL at 1, 3, and 4 days; and TaDPE2 at 3, 4, and 5 days. Our results indicate that exogenous ABA application increased starch content in the leaf organ of wheat seedlings under PEG-induced water deficiency, possibly by temporally regulating the expression levels of the starch synthesis enzyme genes.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
37
Numer
10
Opis fizyczny
Article: 206 [6 p.], fig.,ref.
Twórcy
autor
  • The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, #62, Nongye Road, Zhengzhou, 450002, Henan, China
  • The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
autor
  • The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
autor
  • The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
autor
  • The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, #62, Nongye Road, Zhengzhou, 450002, Henan, China
autor
  • The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, #62, Nongye Road, Zhengzhou, 450002, Henan, China
autor
  • The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, #62, Nongye Road, Zhengzhou, 450002, Henan, China
autor
  • The Collaborative Innovation Center of Henan Food Crops, Henan Agricultural University, #62, Nongye Road, Zhengzhou, 450002, Henan, China
  • The National Engineering Research Centre for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
Bibliografia
  • Bano A, Ullah F, Nosheen A (2012) Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil Environ 58(4):181–185
  • Bogdan J, Zagdánska B (2006) Changes in the pool of soluble sugars induced by dehydration at the heterotrophic phase of growth of wheat seedlings. Plant Physiol Biochem 44:787–794
  • Chen HJ, Chen JY, Wang SJ (2008) Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress. Acta Physiol Plant 30(2):135–142
  • Chen S, Liu Z, Cui J, Ding J, Xia X, Liu D, Yu J (2011) Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings. Plant Growth Regul 65(1):101–108
  • Elberse IAM, Van Damme JMM, Van Tienderen PH (2003) Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. J Ecol 91(3):371–382
  • Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155(4):1566–1577
  • Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci USA 107:9458–9463
  • Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48(6):383–392
  • Kang G, Li G, Liu G, Xu W, Peng X, Wang C, Zhu Y, Guo T (2013a) Exogenous salicylic acid enhances wheat drought tolerance by influence on the expression of genes related to ascorbateglutathione cycle. Biol Plantarum 57(4):718–724
  • Kang G, Xu W, Liu G, Peng X, Guo T (2013b) Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm. Genome 56(2):115–122
  • Kang G, Peng X, Wang L, Yang Y, Shao R, Xie Y, Ma D, Wang C, Guo T, Zhu Y (2015a) Ultrastructural observation of mesophyll cells and temporal expression profiles of the genes involved in transitory starch metabolism in flag leaves of wheat after anthesis. Physiol Plantarum 153(1):12–19
  • Kang G, Li G, Wang L, Wei L, Yang Y, Wang P, Yang Y, Wang Y, Feng W, Wang C, Guo T (2015b) Hg-responsive proteins identified in wheat seedlings using iTRAQ analysis and the role of ABA in Hg stress. J Proteome Res 14(1):249–267
  • Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak C (2008) A central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS ONE 3(12):e3935
  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Ann Rev Plant Biol 49(1):199–222
  • Li G, Peng X, Xuan H, Wei L, Yang Y, Guo T, Kang G (2013) Proteomic analysis of leaves and roots of common wheat (Triticum aestivum L.) under copper-stress conditions. J Proteome Res 12(11):4846–4861
  • Loza-Tavera H, Martinez-Barajas E, Sanchez-de-Jimenez E (1990) Regulation of ribulose-1,5-bisphosphate carboxylase expression in second leaves of maize seedlings from low- and high-yield populations. Plant Physiol 93:541–548
  • Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138(4):2280–2291
  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerancedifferent tiers of regulation. J Plant Physiol 171(7):486–496
  • Ohdan T, Francisco PB, Sawada JT, Hirose T, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56(422):3229–3244
  • Radchuk VV, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W (2009) Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol 150(1):190–204
  • Rathert G (1985) The influence of high salt stress on starch, sucrose and degradative enzymes of two glycine max varieties that differ in salt tolerance. J Plant Nutr 8(3):199–209
  • Setter TL, Parra R (2010) Relationship of carbohydrate and abscisic acid levels to kernel set in maize under postpollination water deficit. Crop Sci 50(3):980–988
  • Sitnicka D, Orzechowski S (2014) Cold-induced starch degradation in potato leaves-intercultivar differences in the gene expression and activity of key enzymes. Biol Plantarum 58(4):659–666
  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 49(325):1329–1337
  • Verslues PE, Zhu JK (2007) New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol 10(5):447–452
  • Wang Z, Xu Y, Chen T, Zhang H, Yang J, Zhang J (2015) Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta 241:1091–1107
  • Wei K, Jin X, Chen X, Wu F, Zhou W, Qiu B, Qiu L, Wang X, Li C, Zhang G (2009) The effect of H2O2 and abscisic acid (ABA) interaction on b-amylase activity under osmotic stress during grain development in barley. Plant Physiol Biochem 47:778–784
  • Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 6:458
  • Weise SE, vanWijk KJ, Sharkey TD (2011) The role of transitory starch in C3, CAM and C4 metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot 62(9):3109–3118
  • Yan HB, Pan XX, Jiang HW, Wu GJ (2009) Comparison of the starch synthesis genes between maize and rice: copies, chromosome location and expression divergence. Theor Appl Genet 119(5):815–825
  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699
  • Yang F, Chen Y, Tong C, Huang Y, Xu F, Li K, Corke H, Sun M, Bao J (2014) Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breeding 34(4):1747–1763
  • Ye NH, Jia LG, Zhang JH (2012) ABA signal in rice under stress conditions. Rice 5:1
  • Zhao H, Dai T, Jiang D, Cao W (2008) Effects of high temperature on key enzymes involved in starch and protein formation in grains of two wheat cultivars. J Agron Crop Sci 194(1):47–54
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f896066b-522d-44bb-b7eb-7c1bb19fc489
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.