PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 2 |

Tytuł artykułu

Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, "BARI Gom 33", in Bangladesh

Treść / Zawartość

Warianty tytułu

PL
Zmniejszenie podwójnego problemu - niedożywienia oraz choroby grzybowej pszenicy poprzez zastosowanie odmiany pszenicy "BARI Gom 33" w Bangladeszu

Języki publikacji

EN

Abstrakty

EN
For the first time in history outside of Latin America, deadly wheat blast caused by the fungus Magnaporthe oryzae pathotype triticum (MoT) emerged in the 2015–2016 wheat (Triticum aestivum L.) season of Bangladesh. Bangladesh, a country in South Asia, has a population of nearly 160 million, of which 24.3% are classified as poor. Consequently, malnutrition and micronutrient deficiency are highly prevalent, particularly among school going children and lactating women. Bangladesh Wheat and Maize Research Institute (BWMRI), with the technical support of the International Maize and Wheat Improvement Center (CIMMYT), Mexico, has developed and released a new wheat ‘BARI Gom 33’. The new wheat is a zinc-enriched (Zn) biofortified wheat, resistant to the deadly wheat blast disease. ‘BARI Gom 33’ provides 5–8% more yield than the check varieties in Bangladesh. Rapid dissemination of it in Bangladesh, therefore, can not only combat wheat blast but also mitigate the problem of Zn deficiency and ensure income for resource-poor wheat farmers. Importantly, a large portion of the current wheat area in India and Pakistan is vulnerable to wheat blast, due to the similarities of the agro-climatic conditions of Bangladesh. As wheat blast is mainly a seed-borne disease, a rapid scaling out of the new wheat in Bangladesh can reduce the probability of MoT intrusion in India and Pakistan, and thereby generate positive externalities to the food security of more than 1 billion people in South Asia. This study explains the development process of ‘BARI Gom 33’; the status of malnutrition in Bangladesh, and the possible economic gain from a rapid scaling out of ‘BARI Gom 33’ in Bangladesh. A few policies are recommended based on the discussions.
PL
W sezonie wegetacyjnym 2015–2016, po raz pierwszy w kraju spoza obszaru Ameryki Łaciń- skiej, w Bangladeszu, stwierdzono pojawienie się bardzo poważnej choroby pszenicy ( Triticum aestivumL.) wywołanej przez pasożyta grzybowego Magnaporthe oryzae patotyp triticum (MoT). Liczba ludności w Bangladeszu, kraju leżącym we wschodniej Azji, wynosi około 160 milionów, z czego 24,3% jest uważana za dotkniętą ubóstwem. Dlatego niedożywienie i deficyty mikropierwiastków w diecie są szeroko rozpowszechnione, zwłaszcza wśród dzieci w wieku szkolnym i kobiet karmiących. Bangladeski Instytut Badawczy Pszenicy i Kukurydzy (Bangladesh Wheat and Maize Research Institute, BWMRI), przy technicznym wsparciu Międzynarodowego Centrum Ulepszania Kukurydzy i Pszenicy (International Maize and Wheat Improvement Center, CIMMYT) w Meksyku, wyhodował i udostępnił nową odmianę pszenicy ‘BARI Gom 33’. Ta nowa odmiana jest wzbogacona w cynk (Zn) (na drodze biofortyfikacji) i jednocześnie odporna na zarazę grzybową. Plonowanie ‘BARI Gom 33’ jest o 5–8% wyższe w porównaniu z innymi odmianami pszenicy uprawianymi w Bangladeszu. W związku z tym, szybkie rozpowszechnienie tej odmiany do upraw mogłoby nie tylko ograniczyć zarazę pszenicy, ale również pomóc zniwelować problem deficytu cynku, zapewniając jednocześnie dochód ubogim rolnikom. Duża część upraw pszenicy w Indiach, Pakistanie i Bangladeszu jest podatna na tę chorobę grzybową ze względu na podobieństwo warunków agro-klimatycznych w tych krajach. Ponieważ choroba ta przenosi się głównie poprzez nasiona, szybkie wprowadzenie do upraw nowej odmiany pszenicy w Bangladeszu mogłoby zredukować prawdopodobieństwo przenikania MoT do Indii i Pakistanu, generując pozytywne skutki zewnętrzne w zakresie bezpieczeństwa żywności dla ponad miliarda ludności w Południowej Azji. W niniejszej pracy opisano proces hodowli odmiany ‘BARI Gom 33’, stan niedożywienia w Bangladeszu oraz potencjalne zyski ekonomiczne na skutek szybkiego rozpowszechnienia ‘BARI Gom 33’ w tym kraju. Wskazano również rożne scenariusze związane z wprowadzeniem ‘BARI Gom 33’ do uprawy.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

2

Opis fizyczny

Article: 1775 [17 p.], fig.,ref.

Twórcy

autor
  • Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur-5200, Bangladesh
  • International Maize and Wheat Improvement Center, Carretera Mexico-Veracruz Km.45, El Batan, Texcoco, Mexico
autor
  • Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur-5200, Bangladesh
autor
  • Bangladesh Wheat and Maize Research Institute, Nashipur, Dinajpur-5200, Bangladesh

Bibliografia

  • FAO (Food and Agriculture Organization of the United Nations). How to feed the world in 2050? Rome: FAO; 2009.
  • World Bank. Population, total [Internet]. Washington, DC: World Bank; 2018 [cited 2019 Jun 20]. Available from: https://data.worldbank.org/indicator/SP.POP.TOTL
  • United Nations. Sustainable development goal 2: end hunger, achieve food security and improved nutrition and promote sustainable agriculture [Internet]. New York, NY: United Nations; 2018 [cited 2019 Jun 20]. Available from: https://sustainabledevelopment.un.org/sdg2
  • Biesalski HK, Birner R, editors. Hidden hunger: strategies to improve nutrition quality. Basel: Karger; 2018. (World Review of Nutrition and Dietetics; vol 118). https://doi.org/10.1159/isbn.978-3-318-06253-3
  • Wellings CR. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res. 2007;58(6):567–575. https://doi.org/10.1071/AR07130
  • Loladze A, Druml T, Wellings CR. Temperature adaptation in Australasian populations of Puccinia striiformis f. sp. tritici. Plant Pathol. 2014;63(3):572–580. https://doi.org/10.1111/ppa.12132
  • Joshi AK, Mishra B, Chatrath R, Ferrara GO, Singh RP. Wheat improvement in India: present status, emerging challenges and future prospects. Euphytica. 2007;157(3)431–446. https://doi.org/10.1007/s10681-007-9385-7
  • Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK, Kasina M, et al. First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis. 2012;96(10):1582. https://doi.org/10.1094/PDIS-06-12-0576-PDN
  • Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS One. 2016;11(10):e0165632. https://doi.org/10.1371/journal.pone.0165632
  • Indian Council of Agricultural Research – National Bureau of Agricultural Insect Resources. Pest alert: 30th July, 2018. Spodoptera frugiperda (J. E. Smith), (Insecta: Lepidoptera) [Internet]. 2018 [cited 2019 Jun 20]. Bengaluru: ICAR-NBAIR; 2018. Available from: http://www.nbair.res.in/recent_events/Pest%20Alert%2030th%20July%202018-new1.pdf
  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, et al. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 2016;14:84. https://doi.org/10.1186/s12915-016-0309-7
  • Callway E. Devastating wheat fungus appears in Asia for the first time. Nature. 2016;532:421–422. https://doi.org/10.1038/532421a
  • Mottaleb KA, Singh PK, Sonder K, Kruseman G, Tiwari TP, Barma NCD, et al. Threats of wheat blast to South Asia’s food security: an ex-ante analysis. PLoS One. 2018;13:e0197555. https://doi.org/10.1371/journal.pone.0197555
  • Mottaleb KA, Singh PK, He X, Hossain A, Kruseman G, Erenstein O. Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: in search of a feasible crops in Bangladesh. Land Use Policy. 2019;82:1–12. https://doi.org/10.1016/j.landusepol.2018.11.046
  • Urashima AS, Grosso C, Stabili A, Freitas E, Silva C, Netto D, et al. Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In: Wang GL, Valent B, editors. Advances in genetics, genomics and control of rice blast disease. Dordrecht: Springer; 2009. p. 267–277. https://doi.org/10.1007/978-1-4020-9500-9_27
  • Chatrath R, Mishra B, Ferrara GO, Singh SK, Joshi AK. Challenges to wheat production in South Asia. Euphytica. 2007;157(3):447–456. https://doi.org/10.1007/s10681-007-9515-2
  • Mottaleb KA, Rahut DB, Kruseman G, Erenstein O. Wheat production and consumption dynamics in an Asian rice economy: the Bangladesh Case. Eur J Dev Res. 2018;30(2):252–275. https://doi.org/10.1057/s41287-017-0096-1
  • FAO (Food and Agriculture Organization of the United Nations) [Internet]. 2018 [cited 2019 Jun 20]. Available from: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
  • BARI (Bangladesh Agricultural Research Institute). Proforma for obtaining approval of the National Seed Board of Bangladesh for a new crop variety/cultivar. Dhaka: Bangladesh Agricultural Research Institute; 2017.
  • NIPORT (National Institute of Population Research and Training), Mitra and Associates, and ICF International. Bangladesh Demographic and Health Survey 2014. Dhaka: NIPORT, Mitra and Associates; 2016.
  • Ahmed T, Mahfuz M, Ireen S, Ahmed AMS, Rahman S, Islam MM, et al. Nutrition of children and women in Bangladesh: trends and directions for the future. J Health Popul Nutr. 2012;30(1):1–11. https://doi.org/10.3329/jhpn.v30i1.11268
  • Hussain AMZ, Talukder MQK, Ahmed T. Nutrition background paper to inform the preparation of the 7th Five Year Plan. Dhaka: Planning Commission, Ministry of Planning; 2015.
  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci. 2014;59(3):365–372. https://doi.org/10.1016/j.jcs.2013.09.001
  • McGuire S. FAO, IFAD, and WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO; 2015.
  • Prentice AM, Gershwin ME, Schaible UE, Keusch GT, Victora CG, Gordon JI. New challenges in studying nutrition-disease interactions in the developing world. J Clin Invest. 2008;118(4):1322–1329. https://doi.org/10.1172/JCI34034
  • Bouis HE, Saltzman A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec. 2017;12:49–58. https://doi.org/10.1016/j.gfs.2017.01.009
  • WHO (World Health Organization). Vitamin and Mineral Nutrition Information System (VMNIS): Micronutrients Database [Internet]. Geneva: Evidence and Programme Guidance Unit of the WHO Department of Nutrition for Health and Development; 2018 [cited 2019 Jun 20]. Available from: https://www.who.int/vmnis/database/en/
  • Fanzo J, Glass S. Ethical and sociocultural considerations of biofortified crops: ensuring value and sustainability for public health. In: Barling D, Fanzo J, editors. Advances in food security and sustainability. Vol. 3. Cambridge, MA: Academic Press; 2018. p. 93–133. https://doi.org/10.1016/bs.af2s.2018.07.001
  • Tulchinsky TH. Micronutrient deficiency conditions: global health issues. Public Health Rev. 2010;32:243–255. https://doi.org/10.1007/BF03391600
  • Hotz C, Brown KH. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. 2004;25:94–204.
  • Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot. 2004;55:353–364. https://doi.org/10.1093/jxb/erh064
  • Black RE, Lindsay HA, Bhutta ZA, Caulfield LE, de Onnis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–260. https://doi.org/10.1016/S0140-6736(07)61690-0
  • Caulfield LE, Black RE. Zinc deficiency. In: Organisation mondiale de la Santé, editor. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. Genève: Organisation mondiale de la Santé; 2004. p. 257–280.
  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521–534. https://doi.org/10.1007/s00204-011-0775-1
  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:396. https://doi.org/10.1016/S0140-6736(13)60937-X
  • National Institutes of Health (US). Zinc: fact sheet for health professionals [Internet]. 2019 [cited 2019 Jun 28]. Available from: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/
  • Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Acad Nutr Diet. 2001;101(3):294.
  • Aburto NJ, Rogers L, de-Regil LM, Kuruchittham V, Rob G, Arif R, et al. An evaluation of a global vitamin and mineral nutrition surveillance system. Arch Latinoam Nutr. 2013;63(2):105–113.
  • Akhtar S, Zinc status in South Asian populations – an update. J Health Popul Nutr. 2013;31(2):139–149. https://doi.org/10.3329/jhpn.v31i2.16378
  • Akhtar S, Ismail T, Atukorala S, Arlappa N. Micronutrient deficiencies in South Asia – current status and strategies. Trends Food Sci Technol. 2013;31(1):55–62. https://doi.org/10.1016/j.tifs.2013.02.005
  • Icddr’b, UNICEF-Bangladesh, Global Alliance for Improved Nutrition (GAIN), Institute of Public Health and Nutrition. The national micronutrients survey 2011–12 [Internet]. 2013 [cited 2019 Jun 20]. Available from: https://static1.squarespace.com/static/56424f6ce4b0552eb7fdc4e8/t/d3159827e39bd4d2314/1464405328062/Bangladesh_NMS_final_report_2011-pdf
  • Gibson RS. The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr Bull. 2007;28:77–100. https://doi.org/10.1177/15648265070281S108
  • White PJ, Broadley MR. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84. https://doi.org/10.1111/j.1469-8137.2008.02738.x
  • Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 2008;302:1–17. https://doi.org/10.1007/s11104-007-9466-3
  • Pfeiffer WH, McClafferty B. HarvestPlus: breeding crops for better nutrition. Crop Sci. 2007;47:88–105. https://doi.org/10.2135/cropsci2007.09.0020IPBS
  • Brinch-Pedersen H, Borg S, Tauris B, Holm PB. Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci. 2007;46:308–326. https://doi.org/10.1016/j.jcs.2007.02.004
  • Cakmak I, Pfeiffer WH, McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010;87:10–20. https://doi.org/10.1094/CCHEM-87-1-0010
  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, et al. Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant. 2006;128:144–152. https://doi.org/10.1111/j.1399-3054.2006.00737.x
  • Persson DP, Hansen TH, Laursen KH, Schjoerring JK. Husted S. Simultaneous iron, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IPICP-MS. Metallomics. 2009;1:418–426. https://doi.org/10.1039/b905688b
  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol. 1999;17:282–286. https://doi.org/10.1038/7029
  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, et al. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J. 2009;7:631–644. https://doi.org/10.1111/j.1467-7652.2009.00430.x
  • Karacabey K, Ozdemir N. The effect of nutritional elements on the immune system. J Obes Weight Loss Ther. 2012;2:152. https://doi.org/10.4172/2165-7904.1000152
  • Wapnir RA, Zinc deficiency, malnutrition and the gastrointestinal tract. J Nutr. 2000;130(5):1388S–1392S. https://doi.org/10.1093/jn/130.5.1388S
  • Lazzerini M, Ronfani L. Oral zinc for treating diarrhoea in children. Cochrane Database Syst Rev. 2008;2008(3):CD005436. https://doi.org/10.1002/14651858.CD005436.pub2
  • National Research Council (US), Subcommittee on Zinc and Assembly of Life Sciences (US), Subcommittee on Zinc. Zinc. Baltimore, MD: University Park Press; 1979
  • Sandstead HH, Penland JG, Alcock NW, Dayal HH, Chen XC, Li JS, et al. Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am J Clin Nutr. 1998;68(2):470S–475S. https://doi.org/10.1093/ajcn/68.2.470S
  • Marone G, Columbo M, de Paulis A, Cirillo R, Giugliano R, Condorelli M. Physiological concentrations of zinc inhibit the release of histamine from human basophils and lung mast cells. Agents Actions.1986;18(1–2):103–106. https://doi.org/10.1007/BF01987995
  • Betsy A, Binitha MP, Sarita S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichology. 2013;5(1)40–42. https://doi.org/10.4103/0974-7753.114714
  • Sturniolo GC, Di Leo V, Ferronato A, D’odorico A, D’incà R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflamm Bowel Dis. 2001;7(2):94–98. https://doi.org/10.1097/00054725-200105000-00003
  • Farhad M, Velu G, Hakim MA, Kabir MR, Alam MA, Mandal MS, et al. Development and deployment of biofortified and blast resistant wheat variety in Bangladesh. In: Book of abstracts of the 13th International Gluten Workshop; 2018 Mar 14–17; Mexico, D.F. Mexico, D.F.: International Maize and Wheat Improvement Center (CIMMYT); 2018. [1 p.]. https://doi.org/10.13140/RG.2.2.15027.89121
  • Pierpaoli E, Carli G, Pignatti E, Canavari M. Drivers of precision agriculture technologies adoption: a literature review. Procedia Technology. 2013;8:61–69. https://doi.org/10.1016/j.protcy.2013.11.010
  • Rogers EM. Diffusion of innovations. New York, NY: The Free Press, MacMillan; 1983. p. 453.
  • Feder G, Just RE, Zilberman D. Adoption of agricultural innovations in developing countries: a survey. Econ Dev Cult Change. 1985;33:255–297. https://doi.org/10.1086/451461
  • World Bank. World development report 2008: agriculture for development. Washington, DC: World Bank; 2008.
  • Barma NC, Hossain A, Hakim MA, Mottaleb KA, Alam MA, Reza MM, et al. Progress and challenges of wheat production in the era of climate change: a Bangladesh perspective. In: Hasanuzzaman M, Nahar K, Hossain A, editors. Wheat production in changing environments. Singapore: Springer; 2018. p. 615–679. https://doi.org/10.1007/978-981-13-6883-7_24
  • Malaker PK, Barma NCD, Tiwari TP, Collis WJ, Duveiller E, Singh PK, et al. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 2016;100:2330. https://doi.org/10.1094/PDIS-05-16-0666-PDN
  • Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Aucique‐Pérez CE, Moreira SI, et al. Wheat blast: from its origins in South America to its emergence as a global threat. Mol Plant Pathol. 2019;20(2):155–172. https://doi.org/10.1111/mpp.12747
  • Chowdhury AK, Saharan MS, Aggrawal R, Malaker PK, Barma NC, Tiwari TP, et al. Occurrence of wheat blast in Bangladesh and its implications for South Asian wheat production. Indian J Genet Plant Breed. 2017;77(1):1–9. https://doi.org/10.5958/0975-6906.2017.00001.3
  • Government of India. Minutes of the meeting on “Occurrence of blast disease on wheat” held under the Chairmanship of Agriculture Commissioner on 28th September, 2016 at Kolkata. File No. 4–2/20 13‐NFSM. New Delhi: Krishi Bhawan; 2016.
  • Press Trust of India. Deadly wheat blast disease spreads to Bengal districts [Internet]. 2017 [cited 2019 Jun 28]. Available from: http://mybs.in/2UU9hQC
  • Sharma R. Wheat blast research: status and imperatives. Afr J Agric Res. 2017;12:377–381. https://doi.org/10.5897/AJAR2016.11860
  • Mottaleb KA, Govindan V, Singh PK, Sonder K, He X, Singh RP, et al. Economic benefits of blast-resistant biofortified wheat in Bangladesh: the case of BARI Gom 33. Crop Prot. 2019;123:45–58. https://doi.org/10.1016/j.cropro.2019.05.013
  • Nowak P. Why farmers adopt production technology. J Soil Water Conserv. 1992;47(1):14–16.
  • Waller BE, Hoy CW, Henderson JL, Stinner B, Welty C. Matching innovations with potential users, a case study of potato IPM practices. Agric Ecosyst Environ. 1998;70:203–215. https://doi.org/10.1016/S0167-8809(98)00149-2
  • Dimara E, Skuras D. Adoption of agricultural innovations as a two-stage partial observability process. Agricultural Economy. 2003;28(3):187–196. https://doi.org/10.1111/j.1574-0862.2003.tb00137.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f875db9b-f3f9-4fb0-b2e9-f7c709323691
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.