PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 2 |

Tytuł artykułu

Use of real-time PCR technique in determination of major fibrolytic and non fibrolytic bacteria present in Indian Surti buffaloes (Bubalus bubalis)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the milk industry in India, buffalo breeds are most commonly used for milk production. Efficiency of fiber digestion in ruminants is critical for animal productivity. Bacteria play an important role in fiber digestion and utilization. Absolute quantification real-time PCR was used to quantify ten bacterial species in rumen fluid of Surti buffalo fed green fodder, dry roughage and compound concentrate mixture. Abundance of each target taxon was calculated as a fraction of the total 16S rRNA gene copies in the samples, using taxon-specific primers. Bacterial populations showed a clear predominance of Ruminococcus albus, which comprised 5.66% of the bacterial rRNA gene copies in the samples. However, only 0.9% to 4.24% of the bacterial rRNA gene copies were represented by the ruminal Fibrobacter succinogenes, Ruminococcus flavefaciens and Prevotella species. The proportion of rRNA gene copies attributable to Selenomonas ruminantium, Streptococcus bovis, Ruminobacter amylophilus, Treponema bryantii and Anaerovibrio lipolytica was even less abundant, each comprising <0.11% of the bacterial rRNA gene copies. The data suggest that the aggregate abundance of the most intensively studied ruminal bacterial species is relatively low and that a large fraction of the uncultured population represents a single bacterial genus.

Wydawca

-

Rocznik

Tom

62

Numer

2

Opis fizyczny

p.195-200,fig.,ref.

Twórcy

autor
  • Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry (CVSAH), Anand Agricultural University (AAU), Anand (388 001), Gujarat, India
  • Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry (CVSAH), Anand Agricultural University (AAU), Anand (388 001), Gujarat, India
autor
  • Animal Nutrition Research Station, CVSAH, AAU, Anand, Gujarat, India
autor
  • Animal Nutrition Research Station, CVSAH, AAU, Anand, Gujarat, India
autor
  • Department of Animal Genetics and Breeding, CVSAH, AAU, Anand, Gujarat, India
  • Department of Microbiology, Christ College, Rajkot, Gujarat, India
autor
  • Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry (CVSAH), Anand Agricultural University (AAU), Anand (388 001), Gujarat, India

Bibliografia

  • Bekele A.Z., S. Koike and Y. Kobayashi. 2011. Phylogenetic diversity and dietary association of rumen Treponema revealed using group-specific 16S rRNA gene-based analysis. FEMS Microbiol. Lett. 316(1): 51–60.
  • Briesacher S.L., T. May, K.N. Grigsby, M.S. Kerley, R.V. Anthony and J.A. Paterson. 1992. Use of DNA probes to monitor nutritional effects on ruminal prokaryotes and Fibrobacter succinogenes S85. J. Anim. Sci. 70: 289–295.
  • Cheng K.J., C.S. Stewart, D. Dinsdale and J. Costerton. 1984. Electron microscopy of bacteria involved in the digestion of plant cell wall. An. Feed. Sci. Tech. 10: 93–120.
  • Cheng K., J.P. Fay, R.E. Howarth and J.W. Costerton. 1980. Sequence events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol. 40: 613–625.
  • Cotta M.A. 1992. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl. Environ. Microbiol. 58: 48–54.
  • Forsberg CW., K. Cheng and B.A. White. 1997. Polysaccharide degradation in the rumen and large intestine. In: Mackie RI, White BA (eds), Gastrointestinal Microbiology. Chapman & Hall. New York, pp. 319–379.
  • Hungate R E. 1966. The Rumen and its Microbes. Academic Press, New York.
  • Khamapa S., M. Wanapat, C. Wachirapakorn and N. Nontaso. 2006. Effects of urea level and sodium di-malate in concentrate containing high cassava chip on ruminal fermentation efficiency, microbial protein synthesis in lactating dairy cows raised under tropical condition. Asian- Aust. J. Anim. Sci. 19: 837–844.
  • Klappenbach J.A., P.R. Saxman, J.R. Cole and T.M. Schmidt. 2001. rrndb: The Ribosomal RNA Operon Copy Number Database. Nucl. Acids. Res. 29: 181–184.
  • Koike S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS. Microbiol. Lett. 204: 361–366.
  • Koike S., J. Pan, Y. Kobayashi and K. Tanaka. 2003. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86: 1429–1435.
  • Koike S., H. Yabuki and Y. Kobayashi. 2007. Validation and application of real-time polymerase chain reaction assays for representative rumen bacteria. Anim. Sci J. 78: 135–141.
  • Krause D.O., B.P. Dalrymple, W.J. Smith, R.I. Mackie and C.S. McSweeney. 1999. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Microbiol. 145: 1797–1807.
  • Kudo H., K.J. Cheng and J.W. Costerton. 1987. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33: 244–248.
  • Kumar S., M. Nagarajan, J. Sandhu, N. Kumar and V. Behl. 2007. Phylogeography and domestication of Indian river buffalo. BMC. Evol. Biol. 7, 186.
  • Layton A., L. McKay, D. Williams, V. Garrett, R. Gentry and G. Sayler. 2006. Development of Bacteroides 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for Estimation of Total, Human, and Bovine Fecal Pollution in Water. Appl. Environ. Microbiol. 72 (6): 4214–4224.
  • Mackie R.I. 1997. Gut environment and evolution of mutualistic fermentative digestion. Gastrointestinal Microbiology, Vol. 1 (Mackie RI & White BA, eds), Chapman & Hall, New York, pp13–35.
  • Maglione G., J.B. Russell and D.B. Wilson. 1997. Kinetics of cellulose digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 63: 665–669.
  • Minato H., M. Mitsumori and K.J. Cheng. 1993. Attachment of microorganisms to solid substrate in the rumen. In: Shimada K, Hoshino S (eds), Genetics, Biochemistry and Ecology of Lignocellulose Degradation. Uni Publishers. Tokyo. pp, 139–145.
  • Minato H. and T. Suto. 1978. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached there from. J. Gen. Appl. Microbiol. 24: 1–16.
  • Mosoni P., F. Chaucheyras-Durand, C. Béra-Maillet and E. Forano. 2007. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J. Appl. Microbiol. 103(6): 2676–2685.
  • Muyzer G., E.C. Dewall and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.
  • Nouaille R., M. Matulova, A.M. Delort and F. Forano. 2005. Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. FEBS Journal. 272: 2416–2427.
  • Ozutsumi Y., K. Tajima, A. Takenaka and H. Itabashi. 2006. Real time PCR detection of the effect of protozoa on rumen bacteria in cattle. Curr. Microbiol. 52: 158–162.
  • Reilly K. and Attwood GT. 1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64: 907–913.
  • Russell J.B. 1985. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Appl. Environ. Microbiol. 49: 572–576.
  • Sawanon S. and Y. Kobayashi. 2006. Synergistic fibrolysis in the rumen by cellulolytic Ruminococcus flavefaciens and noncellulolytic Selenomonas ruminantium: evidence in defined cultures. Anim. Sci. J. 77: 208–214.
  • Scheifinger C.C. and M.J. Wolin. 1973. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. J. Appl. Microbiol. 26: 89–795.
  • Shin E.C., K.M. Cho, W.J. Lim, S.Y. Hong, C.L. An, E.J. Kim, Y.K. Kim, B.R. Choi, J.M. An, J.M. Kang, H. Kim and H.D. Yun. 2004. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J. Appl. Microbiol. 97: 378–383.
  • Stahl D.A., B. Flesher, H.R. Mansfield and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079–1084.
  • Stevenson D.M. and P.J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75(1): 165–74
  • Tajima K., R.I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67: 2766–2774.
  • Wanapat M. and A. Cherdthong. 2009. Use of Real-Time PCR Technique in Studying Rumen Cellulolytic Bacteria Population as Affected by Level of Roughage in Swamp Buffalo. Curr. Microbiol. 58: 294–299.
  • Wolin M.J., T.L. Miller and C.S. Stewart. 1997. Microbe-microbe interactions. In: Hobson PN, Stewart CS (eds). The Rumen Microbial. Ecosystem, Blackie Academic and Professional London. Pp. 467–491.
  • Zimmermann K. and J.W. Mannhalter. 1996. Technical aspects of quantitative competitive PCR. Bio.Tech. 21: 268–279.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f874994c-d30a-4102-8eb3-f89512eb2e4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.