PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 75 | 4 |

Tytuł artykułu

Positional changes in tendon insertions from bone to fascia: development of the pesanserinus and semimembranosus muscle insertion in human foetuses

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Development of a long muscle belly in foetal extremities generally requires a definite bony insertion of the long tendon. However, in adults, the pes anserinus and the semimembranosus tendon (SMT) are inserted into fasciae. Development of fascial insertions in foetuses was investigated by examining serial histological sections obtained from 7 foetuses at 8–9 weeks and 8 foetuses at 14–16 weeks. The presence of matrix substances and macrophages was also examined by immunohistochemistry. At 8 weeks, the tendons of the semitendinosus, gracilis, sartorius and semimembranosus muscles were straight and inserted into the initial shaft-like proximal end of the tibia on the proximal side of the popliteus muscle. At 9 weeks, however, the medially extending popliteus muscle appeared to push the pes anserinus tendons superficially, with a loss of cartilage insertions. The SMT obtained an attachment to the popliteus muscle. At 14–16 weeks, the SMT divided into thick and thin bundles: the former contained abundant macrophages and inserted into the tenascin-positive perichondrium of the enlarged proximal tibia, while the later without macrophages ended at the joint capsule. The pes anserinus tendons, negative for both versican and tenascin-c, took highly tortuous courses toward the fascia cruris. Because the medial extension of the popliteus muscle was associated with the enlargement of the proximal tibia, the topographical relationship of the popliteus muscle with these 4 tendons changed drastically, resulting in a loss of cartilage insertion of the pes anserinus tendons as well as the division and reconstruction of the SMT. (Folia Morphol 2016; 75, 4: 503–511)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

75

Numer

4

Opis fizyczny

p.503-511,fig.,ref.

Twórcy

autor
  • Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanbian, China
autor
  • Department of Anatomy, Akita University School of Medicine, Akita, Japan
autor
  • Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanbian, China
autor
  • Department of Maxillofacial Anatomy, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
autor
  • Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
  • Department of Anatomy and Human Embryology, Institute of Embryology, Faculty of Medicine, Madrid, Spain

Bibliografia

  • 1. Abe S, Nakamura T, Rodriguez-Vazquez JF Murakami G, Ide Y (2011) Early fetal development of the rotator interval region of the shoulder with special reference to topographical relationships among related tendons and ligaments. Surg Radiol Anat, 33: 609–615.
  • 2. Brent AE, Braun T, Tabin CJ (2005) Genetic analysis of interactions between the somatic muscle, cartilage and tendon cell lineages during mouse development. Development, 132: 515–528.
  • 3. Hayashi S, Kim JH, Hwang SE, Shibata S, Fujimiya M, Murakami G, Cho BH (2014) Interface between intramembranous and endochondral ossification in human fetuses. Folia Morphol, 73: 199–205.
  • 4. Ivey M, Prud’homme J (1993) Anatomic variations of the pes anserinus: a cadaver study. Orthopedics, 16: 601–606.
  • 5. Jin ZW, Jin Y, Yamamoto M, Abe H, Murakami G, Yan TF (2016) Oblique cord (chorda obliqua) of the forearm and muscle-associated fibrous tissues at and around the elbow joint: a study of human foetal specimens. Folia Morphol, 75: 493–502.
  • 6. Katori Y, Kim JH, Rodriguez-Vazquez JF, Kawase T, Murakami G, Cho BH (2011) Early fetal development of the intermediate tendon of the digastricus and omohyoideus muscles: a critical difference in histogenesis. Clin Anat, 24: 843–852.
  • 7. Kim JH, Abe S, Shibata S, Maki H, Asakawa S, Murakami G, Cho BH (2012) Dense distribution of macrophages in flexor aspects of the hand and foot of mid-term human fetuses. Anat Cell Biol, 45: 259–267.
  • 8. Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR, Magnusson SP (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sprts, 19: 500–510.
  • 9. Mackey AL, Heinemeier KM, Koskinen SOA, Kjaer M (2008) Dynamic adaptation of tendon and muscle connective tissue to mechanical loading. Connect Tiss Res, 49: 165–168.
  • 10. Milz S, Benjamin M, Putz R (2005) Molecular parameters indicating adaptation to mechanical stress in fibrous connective tissue. Adv Anat Embryol Cell Biol, 178: 1–71.
  • 11. Mochizuki T, Akita K, Muneta T, Sato T (2004) Pes anserinus: Layered supportive structure on the medial side of the knee. Clin Anat, 17: 50–54.
  • 12. Murchison ND, Price BA, Conner DA, Keene DR, Ollson EN, Tabin CJ, Schweitzer R (2007) Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development, 134: 2697–2708.
  • 13. Naito M, Suzuki R, Abe H, Rodriguez-Vazquez JF, Murakami G, Aizawa S (2015) Fetal development of the human obturator internus muscle with special reference to changes in the tendon architecture. Anat Rec, 298: 1282–1293.
  • 14. Nakamura T, Suzuki D, Murakami G, Cho BH, Fujimiya M, Kozuka N (2011) Human fetal anatomy of the posterior semimembranosus complex at the knee with special reference to the gastrocnemio- semimembranosus bursa. Knee, 18: 271–277.
  • 15. Newell RLM, Davies MS (2005) Gray’s Anatomy. Editor-In Chief: Standring S. 39th Ed. Elsevier Churchill Livingstone. London, pp. 1461–1470.
  • 16. Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P (2010) Developing bones are differentially affected by compromised skeletal muscle formation. Bone, 46: 1275–1285.
  • 17. Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R (2009) Recruitment and maintenance of tendon progenitors by TGFbeta dignaling are essential for tendon formation. Development, 136: 1351–1361.
  • 18. Rot-Nikcevic I, Reddy T, Dwoning KJ, Belliveau AC, Hallgrímsson B, Hall BK, Kablar B (2006) Myf5–/–:MyoD–/–amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev Genes Evol, 216: 1–9.
  • 19. Shibata S, Fukada K, Imai H, Abe T, Yamashita Y (2003) In situ hybridization and immunohistochemistry of versican, aggrecan, and link protein and histochemistry of hyaluronan in the developing mouse limb bud cartilage. J Anat, 203: 425–432.
  • 20. Takahashi M, Ward SR, Marchuk LL, Frank CB, Lieber RL (2010) Asynchronous muscle and tendon adaptation after surgical tensioning procedure. J Bone Joint Surg Am, 92: 664–674.
  • 21. Uchiyama E, Kim JH, Abe H, Cho BH, Rodríguez-Vázquez JF, Murakami G (2014) Fetal development of ligaments around the tarsal bones with special reference to contribution of muscles. Clin Anat, 27: 389–398.
  • 22. Zelzer E, Blitz E, Killian ML, Thomopoulas S (2014) Tendon-to-bone attachment: from development to maturity. Birth Defects Res C Embryo Today, 102: 101–112.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f85e2a7c-0929-4ba6-88f7-7880b559db2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.