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Abstract: Weekly urban water demand forecast-
ing using a hybrid wavelet–bootstrap–artifi cial 
neural network approach. This study developed 
a hybrid wavelet–bootstrap–artifi cial neural net-
work (WBANN) model for weekly (one week) 
urban water demand forecasting in situations with 
limited data availability. The proposed WBANN 
method is aimed at improving the accuracy and 
reliability of water demand forecasting. Daily 
maximum temperature, total precipitation and 
water demand data for almost three years were 
used in this study. It was concluded that the hybrid 
WBANN model was more accurate compared to 
the ANN, BANN and WANN methods, and can 
be applied successfully for operational water de-
mand forecasting. The WBANN model simulated 
peak water demand very effectively. The better 
performance of the WBANN model indicated that 
wavelet analysis signifi cantly improved the mod-
el’s performance, whereas the bootstrap technique 
improved the reliability of forecasts by producing 
ensemble forecasts. The WBANN model was also 
found to be effective in assessing the uncertainty 
associated with water demand forecasts in terms 
of confi dence bands; this can be helpful in opera-
tional water demand forecasting. 

Key words: artifi cial neural networks, resampling, 
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INTRODUCTION

The effi cient operation and management 
of an urban water supply system requires 
accurate water demand forecasts, and the 

estimation of future urban water demand 
is critical to the sustainable planning of 
water supply systems. This study focuses 
on urban water demand forecasts for one 
week lead times. Traditional or conven-
tional urban water demand forecasting 
has used linear regression, trend-ex-
trapolation, and time series. Adamowski 
and Karapataki (2010) and Adamowski 
et al. (2012) found that ANN models 
performed better than multiple linear 
regression models for peak weekly wa-
ter demand forecasts.  Adamowski et al. 
(2013) investigated the use of the con-
tinuous wavelet transform to determine 
changes in the temporal pattern of urban 
water demand and its potential mete-
orological drivers, and found that in ar-
eas with low precipitation (e.g. Calgary, 
Canada), there was an inverse relation-
ship between urban water demand and 
precipitation during the summer months. 
One major drawback of ANNs, how-
ever, has been their inability to address 
data non-stationarity. Wavelet analysis 
has been found to be a potentially use-
ful method for detecting non-stationarity 
(Adamowski et al. 2013). To address this 
issue, a hybrid wavelet–bootstrap–arti-
fi cial neural network (WBANN) is ex-
plored in this paper. The hybrid wave-
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let–bootstrap–ANN (WBANN) model 
was developed and compared with the 
hybrid bootstrap-based ANN (BANN) 
and hybrid wavelet-based ANN (WANN) 
methods to assess the effectiveness of 
the models.

METHODOLOGY

Artifi cial neural networks (ANN)
The multilayer feed-forward neural net-
work developed in this study consists of 
an input layer, one or more hidden lay-
ers of computation nodes, and an output 
layer of computation nodes. An output 
node of an ANN is calculated as:
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where:
Ok – output at the kth node through the 
activation function g2,
wji – adjustable weight connecting the ith 
input node and the jth hidden node of the 
respective input and hidden layers,
g1 – activation function of the hidden 
layer,
li – input variable to the ith node of the 
input layer,
wj0 – bias weight for the jth hidden node.

The modeling process is iterated, 
where the output of the g1 function be-
comes the new input that is weighed with 
wji, wk0, and Vj, the hidden value to jth 
node of the hidden layer. The activation 
functions are usually continuous, bound-
ed, and nonlinear transfer functions, such 
as the sigmoid and hyperbolic tangent 
functions. 

Wavelet analysis
Wavelet analysis utilizes a wavelet func-
tion known as a mother wavelet defi ned 
as:

( ) ( )d 0t t t  (1)

and successive wavelets can be derived 
as:
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where:
a – scale or frequency factor, 
b – time factor, 
R – domain of real numbers. 

The time scale wavelet transform of 
a continuous time signal with a fi nite en-
ergy signal f(t), is defi ned as:
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where:
Wf (a, b) – wavelet coeffi cient,
Ψ* – complex conjugate function.

The wavelet transform decomposes 
the signal f(t) into different components 
by searching for correlations between 
the signal and the wavelet function at 
different scales of a and locally around 
the time of b, and forming a contour 
map known as a scalogram. The effort of 
generating several wavelet coeffi cients 
at every possible scale and time can be 
reduced by constraining the wavelet di-
lation (a) and translation (b) parameters 
and defi ning the discrete wavelet trans-
formation – DWT (Mallat 1989) as:
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where:
m, n – integers that determine the magni-
tude of wavelet dilation and translation, 
a0 – specifi ed dilation step, a0 > 1 (most 
commonly a0 = 2),
b0 – location parameter, b0 > 0 (most 
commonly b0 = 1). For a discrete time 
series f(t) occurring at a different time 
– t, where t is an integer time step and 
assuming a0 = 2 and b0 = 1, the DWT is 
simplifi ed to:
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where:
Wf (m, n) – wavelet coeffi cient for 
the DWT of scale a = 2m and location 
b = 2mn,
f(t) – fi nite time series (t = 0, 1, 2, ..., 
N – 1), tmax = N, 
M – integer power of 2 (N = 2M),
n – time translation parameter, 0 < n <
< 2M–m – 1, 
m – magnitude dilation parameter, 1 < m <
< M. 

The DWT operates two functions 
(one a high-pass and the second a low-
-pass fi lter), and separates the original 
time series at these two different scales. 
The wavelet components which identify 
the high frequencies and fast events, and 
which can capture small features of in-
terpretational value in the data, are rec-
ognized as details (d). The wavelet com-
ponent or the residual term, representing 
the background, low frequency informa-

tion (approximation) of data, and which 
captures longer trend cycles is known as 
the approximation (A).

Bootstrap technique
Bootstrap resampling is a computational, 
data-driven simulation method that 
generates multiple realizations from 
one dataset of a distribution or process 
(Efron 1979). Assuming a population of 
an unknown probability distribution F, 
where ti = (xi, yi) is a realization drawn 
independently and identically distributed 
(i.i.d.) from F, xi is a predictor vector with 
yi, the corresponding output variable, 
and n is a random dataset sample drawn 
from F, this results in a random data set 
sample denoted as Tn = {(x1, y1), (x2, y2), 
..., (xn, yn)}. The empirical distribution 
function for Tn is F̂  with a mass of 1/n 
for each t1, t2, …, tn. Similarly, a set of 
bootstrap samples such as T   1, T   2, …, T    s, 
…, T   S can be produced where S is the to-
tal number of bootstrap samples, usually 
ranging from 50 to 200 samples (Efron 
1979). In this study, several bootstrap 
resamples were generated and used to 
train several different ANN models, and 
an ensemble forecast was obtained. For 
each T  s, an ANN model is developed and 
trained using all n observations and the 
ANN output, fANN  (xi, ws  /T  S) is then eval-
uated using a set As of observation pairs 
ti = (xi, yi) that were not included to gen-
erate bootstrap resamples. The perform-
ance of the ANNs in these validation 
tests is subsequently averaged; this also 
represents the generalization error for 
the ANN models relative to Tn. This gen-
eralization error is denoted as E0, and is 
estimated as (Twomey and Smith 1998): 
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where:
fANN (xi, ws    /T    s) – output of the ANN de-
veloped from the bootstrap sample T   s, 
xi – particular input vector,
ws – weight vector. 

Finally, the BANN estimate ˆ( )y x  of 
all developed ANNs is given by the aver-
age of the S bootstrapped estimates (Jia 
and Culver 2006):
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and the variance is given by:
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Performance indices
The performance of the developed ANN, 
BANN, WANN and WBANN models 
were evaluated using four performance 
indices, namely: coeffi cient of deter-
mination (R2), root mean square error 
(RMSE), mean absolute error (MAE), 
and peak percentage deviation (Pdv) (for 
additional information on each perform-
ance index please see Tiwari and Ada-
mowski 2013).

STUDY AREA AND DATA

Calgary is among the largest cities in 
Canada, with a population of approxi-
mately 1.1 million people (City of Cal-
gary 2011). In 2010, the total per capita 
water demand in Calgary was 406 lit-
ers per day, while residential use was 
257 liters per day. The Government of 
Alberta announced in 2006 that new 
water licenses for the Bow River Basin 
will no longer be granted. This situation, 
in the face of issues such as population 
growth and climate change, has led to 
an increased awareness and need for 
water conservation, demand reduction 
measures, and consequently to accurate 
water demand forecasting. The data that 
was used in this study consisted of av-
erage daily water demand, maximum 
temperature, and total precipitation from 
25/3/2004 to 31/12/2006. For the de-
velopment of the models, the data was 
divided into three sets: one for training 
the models (25/03/2004 to 24/03/2005), 
one for cross-validation (25/03/2005 to 
24/03/2006) to check that the models do 
not overfi t, and one for testing the per-
formance (25/03/2006 to 31/12/2006) of 
the developed models. 

MODEL DEVELOPMENT 

Artifi cial neural network (ANN)
Bougadis et al. (2005), and Adamowski 
et al. (2012) suggested that maximum 
temperature, total precipitation and water 
demand itself were very important input 
variables for water demand forecasting. 
Therefore, in this study, these three input 
parameters were considered for optimum 
model development. 
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There is no direct method to select 
the optimum number of inputs for ANN 
models. A trial and error procedure was 
adopted by taking the lagged or delayed 
information of daily time series data of 
water demand, maximum temperature 
and total precipitation for one week lead 
time water demand forecasts.  Follow-
ing this, the optimal number of hidden 
neurons was selected by a trial and error 
procedure for each lead time: the model 
architecture of an ANN was varied by 
testing 1–10 hidden neurons, and the 
number of hidden neurons that produced 
the lowest generalization error was de-
termined to be the optimal structure. 

BANN, WANN and WBANN model 
development
In addition to ANN models, three other 
ANN-based models were developed 
in this study: bootstrap-based ANN 
(BANN), wavelet-based ANN (WANN), 
and wavelet–bootstrap–ANN (WBANN) 
models. An ANN model was initially de-
veloped using the signifi cant inputs iden-
tifi ed after the data was log-transformed 
and linearly scaled to the range (0, 1). To 
train the ANN models, a second-order 
training method, the Levenberg–Mar-
quardt method, was used to minimize 
the mean squared error between the 
forecasted and observed water demand 
values. All the models were developed 
with Matlab codes using MATLAB® 
(v. 7.10.0), apart from the bootstrap re-
samples, which were generated using an 
Excel add-in (Bootstrap.xla).  To develop 
BANN forecasts, 100 ANN models were 
developed for each bootstrap resample 
dataset, and then all the 100 forecasts 
were used to get an ensemble of fore-
casts. The WANN model was developed 

by inputting the wavelet sub-time series 
generated using the discrete wavelet com-
ponents (DWCs). Out of several wave-
let functions (Tiwari and Adamowski 
2013), the Daubechies wavelet function 
db5 with three decomposition levels was 
found to be the most suitable and was 
used to decompose the time series data 
for the development of wavelet-based 
ANN models. All the components of 
each variable (water demand, maximum 
temperature, and total precipitation) were 
used to develop WANN models since all 
components play a different role in the 
original time series.  The WBANN mod-
els are the combination of 100 WANN 
models developed using 100 resamples 
of the wavelet sub-time series dataset. 

RESULTS AND DISCUSSION

The structure and the performance of the 
best ANN, BANN, WANN and WBANN 
models for one week lead time forecasts 
is shown in Table 1. The observed and 
forecasted values are shown in Figure 1. 
For the development of the ANN mod-
els, present and past values of maximum 
temperature (MaxT), total precipitation 
(TotP) and total water demand (WatD-
mand) were considered and after a trial 
and error process the signifi cant input 
variables for water demand at a weekly 
lead time step (t+7 day) were identifi ed 
as WatDmand(t)) and TotP(t), with six 
hidden neurons. This best ANN struc-
ture was also used to develop the BANN 
models. After a trial and error proce-
dure (described earlier), the best WANN 
model was found to have the following 
inputs: A3(t), d1(t), d2(t), d3(t) of Wat-
Dmand; A3(t) and d3(t) of MaxT, and 
A3(t) of TotP with 1, 2 and 3 lag time 
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variables. The optimum number of hid-
den neurons was found to be 4. This best 
WANN structure was also used to de-
velop the WBANN models. The WANN 
model in terms of R2, RMSE, Pdv and 
MAE is signifi cantly better compared 
(Table 1) to the best ANN and BANN 
models. The forecast by the WBANN 
models are the averages of the 100 fore-
casts by the WANN models trained us-
ing different realizations of the training 
dataset consisting of wavelet sub-time 
series. The results of the WBANN mod-
el in terms of R2, RMSE and MAE per-
formance indices for the testing period 

is better compared to the ANN, BANN 
and WANN models. This indicates that, 
whereas wavelet analysis extracts non-
-stationarity from the training dataset, 
bootstrap analysis averages over the er-
ror and produces an optimal and accurate 
result. The WBANN models are trained 
using 100 realizations of the training da-
taset and ensemble forecasts are made by 
averaging 100 forecasts by 100 WANN 
models trained using 100 realizations of 
the training dataset. Thus, even if the na-
ture of the training dataset changes, the 
forecasts will be more reliable and ac-
curate.

TABLE 1. Performance of the best models for the testing dataset using ANN, BANN, WANN and 
WBANN models for 1 week lead time water demand forecasting

Model

Best model structure Performance indices

Input variables
Hidden 
neurons 
– HN

R2 RMSE 
(ML/day) Pdv (%) MAE 

(ML/day)

ANN WatDmand(t), TotP(t) 6 0.59 60.05 27.38 44.39
BANN Same as ANN 6 0.56 58.63 17.88 42.53

WANN

A3(t), d1(t), d2(t), d3(t) of 
WatDmand(t); A3(t) and d3(t) of 

MaxT(t) and A3(t) of TotP(t) with 
1, 2 and 3 lag time variables

4 0.73 45.59 10.85 34.18

WBANN Same as WANN 4 0.80 40.00 13.68 29.24

WatDmand(t), TotP(t) and MaxT(t) = urban water demand, total precipitation and maximum tempera-
ture at time t, respectively. t = daily time step.
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FIGURE 1. Hydrographs of observed and predicted water demand forecasts
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SUMMARY AND CONCLUSIONS

Based on four performance indices, it 
was found that WANN and WBANN 
models performed considerably better 
than ANN and BANN models. The bet-
ter performance of the WANN model for 
one week lead times compared to the 
ANN model demonstrates the useful-
ness of wavelet decomposition. The best 
ANN and BANN models for one week 
water demand forecasting considered 
only water demand and total precipita-
tion to be signifi cant, whereas maximum 
temperature was not found to be use-
ful in the models. In the case of WANN 
and WBANN models, after considering 
wavelet derived sub-time series, all the 
variable (i.e. water demand, total precip-
itation and maximum temperature) com-
ponents were found to be signifi cant and 
improved the model accuracy consider-
ably. The use of wavelets improved the 
accuracy of the forecasts, while the use 
of bootstrapping ensured model robust-
ness along with improved reliability by 
reducing variance.

This fi nding is supported by the fact 
that WBANN models performed well 
even though they were developed us-
ing realizations of very short lengths of 
training datasets, with these realizations 
being quite different from each other 
in their nature. Future research should 
focus on assessing the effectiveness of 
WBANN models using longer lengths 
of datasets (this study focused on situa-
tions with limited data availability). The 
methodology proposed in this study can 
be useful to make probabilistic forecasts 
instead of relying on point forecasts. 
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Streszczenie: Tygodniowa prognoza zapotrzebo-
wania na wodę w obszarach miejskich określana 
metodą hybrydową z wykorzystaniem transforma-
ty falkowej – bootstrapu – sztucznej sieci neuro-
nowej. W artykule zaproponowano hybrydowy 
model (WBANN) wykorzystujący transformatę 
falkową, bootstrap i sztuczną sieć neuronową do 
opracowania tygodniowej prognozy zapotrze-
bowania na wodę w obszarach miejskich przy 
ograniczonej dostępności danych. Proponowany 
model WBANN ma na celu poprawę trafności 
i niezawodności prognozowania zaopatrzenia 
w wodę. W analizach wykorzystane zostały dobo-
we wartości maksymalnej temperatury, sumy opa-
dów i zapotrzebowania na wodę z 3-letniego okre-
su obserwacji. Stwierdzono, że hybrydowy model 
WBANN jest dokładniejszy od modeli ANN, 
BANN i WANN i z powodzeniem może być uży-
ty do operacyjnego prognozowania zapotrzebo-

wania na wodę. Model WBANN bardzo skutecz-
nie prognozuje szczytowy popyt na wodę. Dobre 
wyniki otrzymane z modelu WBANN świadczą 
o tym, że zastosowana analiza falkowa znacząco 
poprawiła dokładność modelu, a metoda bootstra-
pu polepszyła niezawodność (wiarygodność) mo-
delu poprzez prognozowanie ensemblowe. Ocena 
niepewności z zastosowaniem przedziału ufności 
wykazała dużą trafność prognoz generowanych 
przez model WBANN oraz jego przydatność 
w operacyjnym wykorzystaniu

Słowa kluczowe: sztuczne sieci neuronowe, re-
sampling, prognozy ensemblowe, zapotrze-
bowania na wodę, prognozowanie, transformata 
falkowa, Kanada
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