PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Identifying half-century precipitation trends in a Chinese Lake Basin

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This research investigates the spatial and temporal trend analysis of precipitation time series. Precise predictions of precipitation trends can play an imperative role in economic growth of a country. This study examined precipitation inconsistency for 23 stations at Dongting Lake, China, over a 52-year study period (1961-2012). Statistical, nonparametric Mann- Kendall (MK) and Spearman’s rho tests were applied to identify trends within monthly, seasonal, and annual precipitation. The trend-free pre-whitening method was used to exclude sequential correlation in the precipitation time series. The performance of the Mann-Kendall (MK) and Spearman’s rho tests was steady at the tested significance levels. The results showed a fusion of increasing and decreasing trends at different stations within monthly and seasonal time scales. The results obtained with the Mann-Kendall and Spearman’s rho tests showed agreement in their assessments of monthly, seasonal, and annual precipitation trends. The variability of negative and positive trends at various stations points to the need for more detailed studies on the climate change of this region. In the case of whole Dongting basin on the monthly time scale, a significant positive trend is found, while at Yuanjiang River and Xianjiag River both positive and negative significant trends are identified. Only Yuanjiang River has shown a significant trend on the seasonal time scale. No significant trends have been exhibited on the annual time scale in any case. In the case of monthly, Nanxian station exhibited the maximum positive increase in monthly precipitation during the months of July and September. In the case of seasonal, only Tongren station showed a positive trend on the monthly level, and no significant negative trends were detected in both spring and autumn seasons.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1397-1412,fig.,ref.

Twórcy

autor
  • College of Hydraulic and Environmental Engineering, China, Three Gorges University, Yichang, China
  • School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan, China
autor
  • College of Hydraulic and Environmental Engineering, China, Three Gorges University, Yichang, China
  • Hubei Provincial Collaborative Innovation Center for Water Security, Wuhan, 430070, China
autor
  • Centre of Excellence in Water Resources Engineering, University of Engineering and Technology, Lahore, Pakistan
autor
  • School of Life Sciences, South China Normal University, Guangzhou, China
autor
  • School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan, China
autor
  • School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan, China
autor
  • Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan, Pakistan

Bibliografia

  • 1. Jiang B., Chen J., Luo Q., Lai J., Xu H., Wang Y., Yu K. Long-Term Changes in Water Quality and Eutrophication of China’s Liujiang River. Pol. J. Environ. Stud. 25 (3), 1033, 2016.
  • 2. Mann HB. Nonparametric tests against trend. Econom J Econom Soc. 245, 1945.
  • 3. Sen P.K. Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc. 63, 1379, 1968.
  • 4. Yang X.L., Xu L.R., Liu K.K., Li C.H., Hu J., Xia X.H. Trends in temperature and precipitation in the Zhangweinan River Basin during the last 53 Years. Procedia Environ Sci. 13, 1966, 2012.
  • 5. Yang Z.F., Yan Y., Liu Q. The relationship of Streamflow-Precipitation-Temperature in the Yellow River Basin of China during 1961-2000. Procedia Environ Sci. 13, 2336, 2012.
  • 6. Tao H., Gemmer M., Bai Y., Su B., Mao W. Trends of streamflow in the Tarim River Basin during the past 50 years: Human impact or climate change? J Hydrol. 400, 1, 2011.
  • 7. Yaning C., Changchun X., Xingming H., Weihong L., Yapeng C., Chenggang Z., Zhaoxia Y. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat Int. 208, 53, 2009.
  • 8. Shadmani M., Marofi S., Roknian M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour Manag. 26, 211, 2012.
  • 9. Cárdenas O.L., Campos M.N., Patricia N., Sevilla M. Hydroclimatic Trends in Areas with High Agricultural Productivity in Northern Mexico. 24, 1165, 2015.
  • 10. Zhao S., Fang J. Impact of Impoldering and in Changes Central Yangtze Restoration on Dongting Lake. 2004.
  • 11. Du Y., Cai S., Zhang X., Zhao Y. Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210 Pb measurement and satellite image analysis. Geomorphology. 41, 171, 2001.
  • 12. Chen J., Wu X., Finlayson B.L., Webber M., Wei T., Li M., Chen Z. Variability and trend in the hydrology of the Yangtze River, China: Annual precipitation and runoff. J Hydrol. 513, 403, 2014.
  • 13. Xu J., Yang D., Liu Z., Lei Z. Analysis of Spatial-Temporal Variability of Water Resources in Upstream of Yangtze River Using Distributed Hydrological Model. J China Hydrol. 27, 10, 2007.
  • 14. Wang Y., Zhou L. Observed trends in extreme precipitation events in China during 1961-2001 and the associated changes in large-scale circulation. Geophys Res Lett. 32, 1, 2005.
  • 15. Xu C., Fan K., Xiao T. Runoff characteristics and variation tendency of Jinsha River Basin. Yangtze River. 7 (4), 2010.
  • 16. Xu Z.X., Li J.Y., Liu C.M. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrol Process. John Wiley & Sons, Ltd. 21, 1935, 2007.
  • 17. Aleksanyan A.S., Khudaverdyan S.K., Vaseashta A. Modeling River Ecosystem Vulnerability Assessments Due to Climate Change : Case Study of Armenia. 24, 871, 2015.
  • 18. Adnan M., Nabi G., Kang S., Zhang G., Adnan R.M., Anjum M.N., Iqbal M., Ali A.F. Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan. 26, 525, 2017.
  • 19. Yunling H., Yiping Z. Climate Change from 1960 to 2000 in the Lancang River Valley, China. Mt Res Dev. 25, 341, 2015.
  • 20. Gu Y., Lin J., Wang X.L., Zhang X.J. Trend of annual runoff for major rivers in China under climate change. Procedia Eng. 28, 564, 2012.
  • 21. Fan X., Wang M. Change trends of air temperature and precipitation over Shanxi province, China. Theor Appl Climatol. 103, 519, 2011.
  • 22. Jiang Y., Luo Y., Zhao Z., Tao S. Changes in wind speed over China during 1956-2004. Theor Appl Climatol. 99, 421, 2010.
  • 23. Mishra N., Kumar M., Kumar S. Trend Analysis of Precipitation by MK Test in Kumaon Region of Uttarakhand (1901-2010). Indian J Sci Technol. 9, 2016.
  • 24. Ahmad I., Tang D., Wang T., Wang M., Wagan B. Precipitation trends over time using Mann-Kendall and spearman’s Rho tests in swat river basin, Pakistan. Adv Meteorol. 2015, 1, 2015.
  • 25. Palizdan N., Falamarzi Y., Huang Y.F., Lee T.S., Ghazali A.H. Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia. Theor Appl Climatol. Springer Vienna; 117, 589, 2014.
  • 26. Palizdan N., Falamarzi Y., Huang Y.F., Lee T.S. Precipitation trend analysis using discrete wavelet transform at the Langat River Basin, Selangor, Malaysia. Stoch Environ Res Risk Assess. Springer Berlin Heidelberg; 31, 8537, 2017.
  • 27. Rashid M.M., Beecham S., Chowdhury R.K. Assessment of trends in point rainfall using Continuous Wavelet Transforms. Adv Water Resour. 82, 1, 2015.
  • 28. Irannezhad M., Torabi Haghighi A., Chen D., Kløve B. Variability in dryness and wetness in central Finland and the role of teleconnection patterns. Theor Appl Climatol. 122, 471, 2015.
  • 29. Rim C.-S. Homogeneity of Climate Aridity Index Trends Using Mann-Kendall Trend Test. J Korea Water Resour Assoc. 47, 643, 2014.
  • 30. Singh P., Kumar V., Thomas T., Arora M. Changes in rainfall and relative humidity in river basins in northwest and central India. Hydrol Process. 22, 2982, 2008.
  • 31. Shifteh Some’e B., Ezani A., Tabari H. Spatiotemporal trends and change point of precipitation in Iran. Atmos Res. 113, 1, 2012.
  • 32. Partal T., Kahya E. Trend analysis in Turkish precipitation data. Hydrol Process. 20, 2011, 2006.
  • 33. Djaman K., Balde A.B., Rudnick D.R., Ndiaye O., Irmak S. Long-term trend analysis in climate variables and agricultural adaptation strategies to climate change in the Senegal River Basin. Int J Climatol. 37, 2873, 2017.
  • 34. Cárdenas O.L., Campos M.N., Sevilla P.M., Guerrero R.R., Ocampo H.A.G., Moreno M.N.H. Estimating Trends and Return Periods of Daily Extreme Precipitation Associated with Tropical Cyclones in the Core North American Monsoon. Pol. J. Environ. Stud. 25, 2283, 2016.
  • 35. Cárdenas O.L., Guevara H.J.P., Montoya J.M., Campos M.N., Ocampo H.A.G. Seasonal trend indicators and return periods of meteorological drought in the northern states of Mexico. 26, 1471, 2017.
  • 36. Fathian F., Dehghan Z., Bazrkar M.H., Eslamian S. Trends in hydrologic and climatic variables affected by four variations of Mann-Kendall approach in Urmia Lake basin, Iran. Hydrol Sci J. 6667, 2014.
  • 37. Dinpashoh Y., Mirabbasi R., Jhajharia D., Abianeh H.Z., Mostafaeipour A. Effect of Short-Term and Long-Term Persistence on Identification of Temporal Trends. J Hydrol Eng. 19, 617, 2014.
  • 38. Zhao G., Hörmann G., Fohrer N., Zhang Z., Zhai J. Streamflow trends and climate variability impacts in Poyang Lake basin, China. Water Resour Manag. 24, 689, 2010.
  • 39. Hassanzadeh E., Zarghami M., Hassanzadeh Y. Determining the Main Factors in Declining the Urmia Lake Level by Using System Dynamics Modeling. Water Resour Manag. 26, 129, 2012.
  • 40. Taxak A.K., Murumkar A.R., Arya D.S. Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather Clim Extrem. 4, 50, 2014.
  • 41. Ahmad I., Tang D.S., Wang M., Hashim S. Trend analysis on precipitation time series data in munda catchment, Pakistan. Appl Mech Mater. 692, 97, 2014.
  • 42. Sharma C.S., Panda S.N., Pradhan R.P., Singh A., Kawamura A. Precipitation and temperature changes in eastern India by multiple trend detection methods. Atmos Res. 180, 211, 2016.
  • 43. Wang X., Hou X., Wang Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos Res. Elsevier; 197, 94, 2017.
  • 44. Chatterjee S., Khan A., Akbari H., Wang Y. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India. Atmos Res. 182, 54, 2016.
  • 45. Zaman M., Yuan S., Liu J., Usman M., Ahmad I., Chandio F.A., Saifullah M., Liaqat M.U., Adnan M. Quantifying the Effect of Climate Change on Precipitation and Temperature Patterns by Using Variant of Non-Parametric Techniques. Fresenius Environ Bull. 26, 7419, 2017.
  • 46. Zaman M., Fang G., Saifullah M., Javed Q. Seasonal and Annual Precipitation Trend Prediction in Xin’Anjiang China. Fresenius Environ Bull. 25 (1), 89, 2016.
  • 47. Zaman M., Fang G., Mehmood K., Saifullah M. Trend Change Study of Climate Variables in Xin’anjiang-Fuchunjiang Watershed, China. Adv Meteorol. 2015, 1, 2015.
  • 48. Yue S., Pilon P., Cavadias G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol. 259, 2541, 2002.
  • 49. Kendall M. Rank Correlation Methods. 4th Ed. London: Charles Griffin. 1975.
  • 50. Zhang Q., Liu C., Xu C., Xu Y., Jiang T. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J Hydrol. 324, 255, 2006.
  • 51. Gocic M., Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob Planet Change. 100, 172, 2013.
  • 52. Basistha A., Arya D.S., Goel N.K. Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol. 29, 555, 2009.
  • 53. Avissar R., Werth D. Global hydroclimatological teleconnections resulting from tropical deforestation. J Hydrometeorol. 6, 134, 2005.
  • 54. Pielke R.A., Adegoke J., Beltran-Przekurat A., Hiemstra C.A., Lin J., Nair U.S., Niyogi D., Timothy E. An overview of regional land-use and land-cover impacts on rainfall. Tellus B. 59, 587, 2007.
  • 55. Song Y., Achberger C., Linderholm H.W. Rainseason trends in precipitation and their effect in different climate regions of China during 1961–2008. Environ Res Lett. 6, 34025, 2011.
  • 56. Tian Y., Xu Y.P., Booij M.J., Lin S., Zhang Q., Lou Z. Detection of trends in precipitation extremes in Zhejiang, east China. Theor Appl Climatol. 107, 201, 2012.
  • 57. Zhao P., Jones P., Cao L., Yan Z., Zha S., Zhu Y., Yu Y., Tang G. Trend of surface air temperature in Eastern China and associated large-scale climate variability over the last 100 years. J Clim. 27, 4693, 2014.
  • 58. Dong D., Huang G., Qu X., Tao W., Fan G. Temperature trend–altitude relationship in China during 1963-2012. Theor Appl Climatol. 122, 285, 2015.
  • 59. Tang G., Ding Y., Wang S., Ren G., Liu H., Zhang L. Comparative Analysis of China Surface Air Temperature Series for the Past 100 Years. Adv Clim Chang Res. Elsevier Masson SAS, 1, 11, 2010.
  • 60. Piao S., Ciais P., Huang Y., Shen Z., Peng S., Li J., Zhou L., Liu H., Ma Y., Ding Y., Friedlingstein P. The impacts of climate change on water resources and agriculture in China. Nature. Nature Publishing Group. 467, 43, 2010.
  • 61. Fathian F., Morid S., Kahya E. Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theor Appl Climatol. 119, 443, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f78a8250-ab81-429e-8c85-c065e24bef23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.