PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |

Tytuł artykułu

Sorption and transformation of pyrantel pamoate by synthetic birnessite

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Pyrantel pamoate is a combination of pyrantel and pamoate used as a deworming agent for domesticated animals. This study investigated the sorption and transformation of pyrantel pamoate by birnessite (δ-MnO₂) under different conditions. Pamoate was first oxidized into keto naphthalene derivatives by manganese oxide. The pamoate degradation rate obeyed the second-order kinetic law, first order with respect to MnO₂ and first order with respect to pamoate. Pyrantel was not transformed by birnessite but showed adsorption on birnessite only after 20 h of reaction time when pamoate was transformed into products that could not participate in the solubilization of pamoate. The presence of natural organic matter showed inhibition of pamoate transformation and reduced pyrantel adsorption probably by competition for reactive sites and by enhancing water solubility of pyrantel. In soils and sediments, manganese oxide can participate in the oxidation of pamoate and sorption of pyrantel.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

5

Opis fizyczny

p.2041-2048,fig.,ref.

Twórcy

autor
  • Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
autor
  • Universite de Poitiers, Poitiers, France
autor
  • Universite de Poitiers, Poitiers, France

Bibliografia

  • 1. BOXALL A.B.A. Veterinary Medicines and the Environment. In Comparative and Veterinary Pharmacology - Handbook of Experimental Pharmacology; Cunningham F., Elliott J., Lees P., Eds., Springer: Berlin, Heidelberg, Germany, 199, 291, 2010.
  • 2. HORVAT A.J.M., BABIC S., PAVLOVIC D.M., ASPERGER D., PELKO S., KASTELAN-MACAN M.. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trac-Trends in Analytical Chemistry, 31, 61, 2012.
  • 3. SAESMAA T., TOTTERMAN A. Dissolution Studies on Ampicillin Embonate and Amoxycillin Embonate. Journal of Pharmaceutical and Biomedical Analysis, 8, 61, 1990.
  • 4. LV C., LI J., HOU Z., LI M. Construction of Two New Metal-Organic Frameworks from Pamoic Acid and N-Containing Auxiliary Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 24, 388, 2014.
  • 5. CAO T., PENG Y., LIU T., WANG S., DOU J., LI Y., ZHOU C., LI D., BAI J. Assembly of a series of d(10) coordination polymers of pamoic acid through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties. Crystengcomm, 16, 10658, 2014.
  • 6. ZHANG L.N., SUN X.L., DU C.X., HOU H.W. Structural diversity and fluorescent properties of new metal-organic frameworks constructed from pamoic acid and different N-donor ligands. Polyhedron, 72, 90, 2014.
  • 7. ZHAO P., SHARIR H., KAPUR A., COWAN A., GELLER E.B., ADLER M.W., SELTZMAN H.H., REGGIO P.H., HEYNEN-GENEL S., SAUER M., CHUNG T.D., BAI Y., CHEN W., CARON M.G., BARK L.S., ABOOD M.E. Targeting of the Orphan Receptor GPR35 by Pamoic Acid: A Potent Activator of Extracellular Signal-Regulated Kinase and beta-Arrestin2 with Antinociceptive Activity. Molecular Phamacology, 78, 560, 2010.
  • 8. HU H.Y., HORTON J.K., GRYK M.R., PRASAD R., NARON J.M., SUN D.A., HECHT S.M., WILSON S.H., MULLEN G.P. Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping. Journal of Biological Chemistry, 279, 39736, 2004.
  • 9. REMUCAL C.K., GINDER-VOGEL M. A critical review of the reactivity of manganese oxides with organic contaminants. Environmental Science: Process & Impacts, 16, 1247, 2014.
  • 10. GREBEL J.E., CHARBONNET J.A., SEDLAK D.L. Oxidation of organic contaminants by manganese oxide geomedia for passive urban stormwater treatment systems. Water Research, 88, 481, 2016.
  • 11. STONE A. Reductive Dissolution of Manganese(II/IV) Oxides by Substituted Phenols. Environmental Science & Technology, 21, 979, 1987.
  • 12. LIN K., LIU W., GAN J. Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways. Environmental Science & Technology, 43, 3860, 2009.
  • 13. PARIDA K.M., PRADHAN A.C. Removal of phenolic compounds from aqueous solutions by adsorption onto manganese nodule leached residue. Journal of Hazardous Materials, 173, 758, 2010.
  • 14. STONE A., MORGAN J. Reduction and Dissolution of Manganese(III) and Manganese(IV) Oxides by Organics. 1. Reaction with Hydroquinone. Environmental Science & Technology, 18, 450, 1984.
  • 15. BALGOOYEN S., ALAIMO P. J., REMUCAL C. K., GINDER-VOGEL M. Structural Transformation of MnO₂ during the Oxidation of Bisphenol A. Environmental Science & Technology, 51, 6053, 2017.
  • 16. JIANG J., GAO Y., PANG S.Y., LU X.T., ZHOU Y., MA J., WANG Q. Understanding the Role of Manganese Dioxide in the Oxidation of Phenolic Compounds by Aqueous Permanganate. Environmental Science & Technology, 49, 520, 2015.
  • 17. CHEN W.R., DING Y., JOHNSON C.T., TEPPEN B.J., BOYD S.A., LI H. Reaction of Lincosamide Antibiotics with Manganese Oxide in Aqueous Solution. Environmental Science Technology, 44, 4486, 2010.
  • 18. FEITOZA-FELIZZOLA J., HANNA K., CHIRON S. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron(III) and manganese(IV) oxides. Environmental Pollution, 157, 1317, 2009.
  • 19. JOHNSON K., PURVIS G., LOPEZ-CAPEL E., PEACOCK C., GRAY N., WAGNER T., MARZ C., BOWEN L., OJEDA J., FINLAY N., ROBERTSON S., WORRALL F., GREENWELL C. Towards a mechanistic understanding of carbon stabilization in manganese oxides. Nature Communications, 6, ncomms8628, 2015.
  • 20. MURRAY J. Surface Chemistry of Hydrous Manganese-Dioxide. Journal of Colloid and Interface Science, 46, 357, 1974.
  • 21. MORGAN J., STUMM W. Colloid-Chemical Properties of Manganese Dioxide. Journal of Colloid Science, 19, 347, 1964.
  • 22. CHING S., LANDRIGAN J.A., JORGENSEN M.L. Sol-Gel Synthesis of Birnessite from KMnO4 and Simple Sugars. Chemistry of Materials, 7, 1604, 1995.
  • 23. HUGUET M., SIMON V., GALLARD H. Transformation of paracetamol into 1,4-benzoquinone by a manganese oxide bed filter. Journal of Hazardous Materials, 271, 245, 2014.
  • 24. HUGUET M., DEBORDE M., PAPOT S., GALLARD H. Oxidative decarboxylation of diclofenac by manganese oxide bed filter. Water Research, 47, 5400, 2013.
  • 25. ZHANG H.C., HUANG C.H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environmental Science & Technology, 37, 2421, 2003.
  • 26. MEANS J., WIJAYARATNE R. Role of Natural Colloids in the Transport of Hydrophobic Pollutants. Science, 215, 968, 1982.
  • 27. ALLARD S., GUTIERREZ L., FONTAINE C., CROUE J.-P., GALLARD H. Organic matter interactions with natural manganese oxide and synthetic birnessite. Science of The Total Environment, 583, 487, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f71d47c3-b8d6-4ead-bc6d-c8e986890d96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.