PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 2 |

Tytuł artykułu

The heavy-metal resistance determinant of newly isolated bacterium from a nickel-contaminated soil in southwest Slovakia

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A bacterial isolate MR-CH-I2 [KC809939] isolated from soil contaminated mainly by high nickel concentrations in southwest Slovakia was previously found carrying nccA-like heavy-metal resistance determinant, marked as MR-CH-I2-HMR [KF218096]. According to phylogenetic analysis of short (696 bp) 16S rDNA (16S rRNA) sequences this bacterium was tentatively assigned to Uncultured beta proteobacterium clone GC0AA7ZA05PP1 [JQ913301]. nccA-like gene product was on the same base of its partial (581 bp) sequences tentatively assigned to CzcA family heavy metal efflux pump [YP_001899332] from Ralstonia picketii 12J with 99% similarity. In this study the bacterium MR-CH-I2 and its heavy-metal resistance determinant were more precisely identified. This bacterial isolate was on the base of phylogenetic analysis of almost the whole (1,500 bp) 16S rDNA (16S rRNA) sequence, MR-CH-I2 [MF102046], and sequence for gyrB gene and its product respectively, MR-CH-I2-gyrB [MF134666], assigned to R. picketii 12J [CP001068] with 99 and 100% similarities, respectively. In addition, the whole nccA-like heavy-metal resistance gene sequence (3,192 bp), marked as MR-CH-I2-nccA [KR476581], was obtained and on the base of phylogenetic analysis its assignment was confirmed to MULTISPECIES: cation efflux system protein CzcA [WP_004635342] from Burkholderiaceae with 98% similarity. Furthermore, although the bacterium carried one high molecular plasmid of about 50 kb in size, nccA-like gene was not located on this plasmid. Finally, the results from RT-PCR analysis showed that MR-CH-I2-nccA gene was significantly induced only by the addition of nickel.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

p.191-201,fig.,ref.

Twórcy

autor
  • Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
autor
  • Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
  • Metalloprotein Research Group, Division of Biochemistry, Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
autor
  • Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia

Bibliografia

  • Abdelatey L.M., W.K.B. Khalil, T.H. Alit and K.F. Mahrous. 2011. Heavy metal resistance and gene expression analysis of metal resistance genes in Gram-positive and Gram-negative bacteria present in Egyptian soils. J. Appl. Sci. Environ. Sanit. 6: 201–211.
  • Adley C., J. Pembroke and M. Ryan. 2007. Ralstonia pickettii in environmental biotechnology potential and applications. J. Appl. Microbiol. 103: 754–764.
  • Bell C.W., V. Acosta-Martinez, N.E. McIntyre, S. Cox, D.T. Tissue and J.C. Zak. 2009. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland. Microb. Ecol. 58: 827–842.
  • Bogdanova E.S., I.A. Bass, L.S. Minakhin, M.A. Petrova, S.Z. Mindlin, A.A. Volodin, E.S. Kalyaeva, J.M. Tiedje, J.L. Hobman, N.L. Brown and V.G. Nikiforov. 1998. Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144: 609–620.
  • Bohuš P. and J. Klinda. 2010. Environmentálna regionalizácia Slovenskej republiky. Bratislava: MŽP SR, Banská Bystrica: SAŽP, 2010, s. 9–21 (In Slovak).
  • Choudhary S. and P. Sar. 2016. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007. J. Basic Microbiol. 56: 688–697.
  • Coenye T., P. De Vos, J. Goris and P. Vandamme. 2003. Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa. Int. J. Syst. Evol. Microbiol. 53: 1075–1080.
  • Erbe J.L., K.B Taylor and L.M. Hall. 1995. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Nucleic Acids Res. 23: 2472–2478.
  • Fett J., K. Konstantinidis, N. Isaacs, D. Long and T. Marsh. 2003. Microbial diversity and resistance to copper in metal-contaminated lake sediment. Microbial Ecol. 45: 191–202.
  • Gwrtac. 1997. Remediation of metals-contaminated soils and ground-water. Tech. Evaluation. Rep. 97:53.
  • Ji G. and S. Silver. 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174: 3684–3694.
  • Johnson J.M. and G.M. Church. 1999. Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps. J. Mol. Biol. 287: 695–715.
  • Kaeberlein T., K. Lewis and S.S. Epstein. 2002. Isolating ‘‘uncultivable’’ microorganisms in pure culture in a simulated natural environment. Science 296: 1127–1129.
  • Karelová E., J. Harichová, T. Stojnev, D. Pangallo and P. Ferianc. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia (Bratislava) 66: 18–26.
  • Kunito T., T. Kusano, H. Oyaizu, K. Senoo, S. Kanazawa andS. Matsumoto. 1996. Cloning and sequence analysis of czc genes in Alcaligenes sp. strain CT14. Biosci. Biotechnol. Biochem. 60: 699–704.
  • Lane D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In: Stackebrandt E. and M. Goodfellow (eds). Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York.
  • Ławniczak Ł., A. Syguda, A. Borkowski, P. Cyplik, K. Marcin-kowska, Ł. Wolko, T. Praczyk, Ł. Chrzanowski and J. Pernak. 2016. Influence of oligomeric herbicidal ionic liquids with MCPA and Dicamba anions on the community structure of autochthonic bacteria present in agricultural soil. Sci. Total Environ. 563–564: 247–255.
  • Legatzki A., S. Franke, S. Lucke, T. Hofmann, A. Anton, D. Neumann and D.H. Nies. 2003. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans. Biodegradation 14: 153–168.
  • Liu H.Y., A. Probs and B. Liao. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 339: 153–166.
  • Mergeay M., S. Monchy, T. Vallaeys, V. Auquier, A. Benotmane, P. Bertin, S. Taghavi, J. Dunn, D. Van der Lelie and R. Wattiez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385–410.
  • Mobley H.L., C.M. Chen, S. Silver and B.P. Rosen. 1983. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet. 191: 421–426.
  • Nascimento A.M.A. and E. Chartone-Souza. 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2: 92–101.
  • Nies D., M. Mergeay, B. Friedrich and H.G. Schlegel. 1987. Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J. Bacteriol. 169: 4865–4868.
  • Nies D.H. 1992. Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27: 17–28.
  • Nies D.H. 1995. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-protonantiporter in Escherichia coli. J. Bacteriol. 177: 2707–2712.
  • Nies D.H. 1999. Microbial heavy metal resistance. Appl. Microbiol. Biotechnol. 51: 730–750.
  • Nies D.H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313–339.
  • Nováková R., R. Knirschová, M. Farkašovský, Ľ. Fecková,A. Reháková, E. Mingyar and J. Kormanec. 2013. The gene cluster aur1 for the angucycline antibiotic auricin is located on a large linear plasmid pSA3239 in Streptomyces aureofaciens CCM 3239. FEMS Microbiol. Lett. 342: 130–137.
  • Panagos P., M. Van Liedekerke, Y. Yigini and L. Montanarella. 2013. Contaminated sites in Europe: Review of the current situation based on data collected through a European network. J. Environ. Public Health. 2013: 11 pp. ID 158764. http://dx.doi.org/10.1155/2013/158764
  • Paulsen I.T., J.H. Park, P.S. Choi and M.H.J. Saier. 1997. A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol. Lett. 156: 1–8.
  • Remenár, M., E. Karelová, J. Harichová, M. Zámocký, A. Kamlárová and P. Ferianc. 2015. Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach. Appl. Soil Ecol. 95: 115–127.
  • Rosenstein R., A. Peschel, B. Wieland and F. Götz. 1992. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676–3683.
  • Saier M.H.J., R. Tam, A. Reizer and J. Reizer. 1994. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11: 841–847.
  • Saltikov C.W. and B.H. Olson. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 68:280–288.
  • Salvador M., G. Carolina and E. Jose. 2007. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl. Environ. Microbiol. 73: 6001–6011.
  • Schmidt T. and H.G. Schlegel. 1994. Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054.
  • Shiowatana J., R.G. McLaren, N. Chanmekha and A. Samphao. 2001. Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J. Environ. Qual. 30: 1940–1949.
  • Silver S. and L.T. Phung. 1996. Bacterial heavy metal resistance: New surprises. Ann. Rev. Microbiol. 50: 753–789.
  • Stackebrandt E., R.G.E. Murray and H.G. Trüper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the „Purple Bacteria and Their Relatives“. Int. J. Syst. Bacteriol. 38: 321–325.
  • Sydow M., M. Owsianiak, Z. Szczepaniak, G. Framski, B.F. Smets, Ł. Ławniczak, P. Lisiecki, A. Szulc, P. Cyplik and Ł. Chrzanowski. 2016. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil. N. Biotechnol. 33: 852–859.
  • Sydow M., L. Chrzanowski, N. Cedergreen and M. Owsianiak. 2017. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils. J. Environ. Manage. 198(Pt 2): 32–40.
  • Tamura K., D. Peterson, N. Peterson, G. Stecher, M. Nie and S. Kumar. 2011. “MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods”. Mol. Biol. Evol. 28: 2731–2739.
  • Tchounwou P.B., C.G. Yedjou, A.K. Patlolla and D.J. Sutton. 2012. Heavy metals toxicity and the environment. EXS 101: 133–164.
  • Thiyagarajan V., S. Lau, M. Tsoi, W. Zhang and P.Y. Qian. 2010. Monitoring bacterial biodiversity in surface sediment using terminal restriction fragment length polymorphism analysis (T-RFLP): Application to coastal environment, pp. 151–163. In: Ishimatsu A. and H.-J. Lie (eds). Coastal environmental and ecosystem issues of the East China sea. TERRAPUB & Nagasaki University.
  • Tóth G., T. Hermann, M.R. Da Silva and L. Montanarella. 2016. Heavy metals in agricultural soils of the European Union with implica-tions for food safety. Environ. Int. 88: 299–309.
  • Tseng T.-T., K.S. Gratwick, J. Kollman, D. Park, D.H. Nies, A. Goffeau and M.H.J. Saier. 1999. The RND superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1: 107–125.
  • Wuana R.A. and F.E. Okieimen. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011: 20 pp. ID 402647. doi:10.5402/2011/402647
  • Yamamoto S. and S. Harayama. 1995. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 61: 1104–1109.
  • Zgurskaya H.I. and H. Nikaido. 1999a. Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96: 7190–7195.
  • Zgurskaya H.I. and H. Nikaido. 1999b. AcrA is a highly asymmetric protein capable of spanning the periplasm. J. Mol. Biol. 285: 409–420.
  • Zgurskaya H.I. and H. Nikaido. 2000a. Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37: 219–225.
  • Zgurskaya H.I. and H. Nikaido. 2000b. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J. Bacteriol. 182: 4264–4267.
  • “Ralstonia pickettii” JGI Genome Portal – Home. Web. 2010. http://genome.jgi-psf.org/ralpd/ralpd.home.html.
  • “HAMAP: Ralstonia pickettii (strain 12D) complete proteome.” ExPASy Proteomics Server. Swiss Institute for Bioinformatics. Web. 2010. http://www.expasy.ch/sprot/hamap/RALP1.html.
  • “HAMAP: Ralstonia pickettii (strain 12J) complete proteome.” ExPASy Proteomics Server. Swiss Institute for Bioinformatics. Web. 2010. http://expasy.org/sprot/hamap/RALPJ.html.
  • https://www.ncbi.nlm.nih.gov/protein/YP_001899332

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f6ec5c27-96bd-4d4f-906f-77e61172adda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.