Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |
Tytuł artykułu

Resistance of arylsulfatase to contamination of soil by heavy metals

Warianty tytułu
Języki publikacji
Contamination of soils by heavy metals is a severe problem because of disturbances caused in the functioning of the soil and the whole ecosystem. Therefore, the aim of our research was to determine the influence of contamination of soil by zinc, copper, nickel, cadmium, and lead on the activity of arylsulfatase. A novel element of the study is a comparison of the response of arylsulfatase to five heavy metals in three soils with two pH ranges: 7.0 and 5.5. The studies were carried out under laboratory conditions. The soils (loamy sand, sandy loam, sandy clay loam), with pH 7.0 and 5.5 and contaminated with zinc, copper, nickel, cadmium, and lead were incubated for 30, 60, and 120 days. After each period, the activity of arylsulfatase was determined. Base on the activity of arylsulfatase, a resistance index of arylsulfatase (RS) to contamination with heavy metals was calculated. The highest activity of arylsulfatase was found in sandy clay loam, while the lowest was found in loamy sand. A significant correlation between the resistance of the enzyme and the level of contamination of the soil with heavy metals was proved. Arylsulfatase was most sensitive to the effects of zinc, copper, and nickel, while cadmium exerted a somewhat weaker influence and lead the least. The enzyme exhibited a higher resistance to the influence of heavy metals in neutral soils than in acidic soils. The toxic effect of heavy metals can be ordered as follows: zinc > copper > nickel > lead > cadmium.
Słowa kluczowe
Opis fizyczny
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
  • Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
  • 1. JOHNSON C. C., ANDER E. L. Urban geochemical mapping studies: how and why we do them. Environ. Geochem. Hlth 30, 511, 2008.
  • 2. BIYIK H., IMALI A., ATALAN E., TÜFUNKCI S., ÖGÜN E. Diversity of microfungi in soil polluted by cement factory, Fresen. Environ. Bull. 14, 130, 2005.
  • 3. WYSZKOWSKI M., WYSZKOWSKA J. The effect of soil contamination with cadmium on the growth and chemical composition of spring baley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Fresen. Environ. Bull. 18 (7), 1046, 2009.
  • 4. BOROS E., BAĆMAGA M., KUCHARSKI J., WYSZKOWSKA J. The usefulness of organic substances and plant growth in neutralizing the effects of zinc on the biochemical properties of soil. Fresen. Environ. Bull. 20 (12), 3101, 2011.
  • 5. ZABOROWSKA M., KUCHARSKI J., WYSZKOWSKA J. Biological properties of soil contaminated with cadmium. J Elem. 20 (3), 769, 2015.
  • 6. PREEM J.K., TRUU J., TRUU M., MANDER Ü., OOP-KAUP K., LÖHMUS K., HELMISAARI H.S., URI V., ZOBEL M. Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecol. Eng. 49, 10, 2012.
  • 7. PANAGOS P., VAN LIEDERKE M., YIGINI Y., MONTARELLA L. Contaminated sites in Europe: Review of the current situation based on data collected through a European Network. J. Environ. Publ. Hlth 2013, 1, 2013.
  • 8. LADO L.R., HENGL T., REUTER H.I. Heavy metals in european soils: a geostatistical analysis of the FOREGS Geochemical database. Geoderma, 148, 189, 2008.
  • 9. SMITH R.S. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 35, 142, 2009.
  • 10. SIDEŁKO R. Bounding of copper, lead and chromium during composting of municipal wastes. Ochr. Sr. 26 (3), 37, 2004.
  • 11. HENDERSON B.L., BUI E.N., MORAN C.J., SIMON D.A.P., Australia-wide predictions of soil properties using decision trees. Geoderma 124 (3-4), 383, 2005.
  • 12. KHAN S., CAO Q., ZHENG Y.M., HUANG Y.Z., ZHU Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China. Environ. Poll. 152, 686, 2008.
  • 13. UTOBO E.B., TEWARI L. Soil ecosystem as bioindicators of soil ecosystem status, Appl. Ecol. Env. Res. 13 (1), 147, 2014.
  • 14. BUTNARIU M. Markers, Indicators of Soil. In: Environmental Indicators, 343, 2015.
  • 15. MORENO J.L., GARCÍA C., HERNÁNDEZ T. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. Eur. J. Soil Sci. 54, 377, 2003.
  • 16. KERTESZ M.A., MIRLEAU P. The role of soil microbes in plant sulphur nutrition. J. Exp. Bot. 55 (404), 1939, 2004.
  • 17. CHANDER K., DYCKMANS J., JOERGNSEN R.G.J., MEYER B.G., RAUBUCH M. Different sources of heavy metals and their long-term on soil microbial properties. Biol. Fert. Soils 34, 241, 2001.
  • 18. ACOSTA-MARTINEZ V., TABATABAI M. A. Enzyme activities in a limed agricultural soil. Biol. Fert. Soils 31, 85, 2000.
  • 19. WYSZKOWSKA J., BOROWIK A., KUCHARSKI M., KUCHARSKI J. Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J. Elem. 18 (4), 769, 2013.
  • 20. SIWIK-ZIOMEK A. KOPER J. Changes in the content of sulphae sulphur and arylosulphatase activity in soil under potato caused by fertilization. J. Elem. 15 (1), 171, 2010.
  • 21. LI X., SARAH P. Arylsulfatase activity of soil microbial biomass along a Mediterranean-arid transect. Soil Biol. Biochem. 35 (7), 925, 2003.
  • 22. SIEBIELEC G., SMRECZAK B., KLIMKOWICZ-PAWLAS A., MALISZEWSKA-KORDYBACH B., TERELAK H., KOZA P., HRYŃCZUK B., ŁYSIAK M., MITURSKI T., GAŁĄZKA R., SUSZEK B. Monitoring of chemical composition of soil in Poland in years 2010-2012 (eds.) SIEBIELEC G. IUNG PIB Puławy, 202, 2012.
  • 23. WIECZOREK K., WYSZKOWSKA J., KUCHARSKI J. Influence of zinc, copper, nickel, cadmium and lead in soils on acid phosphatase activity. Fresen. Environ. Bull. 23 (1A), 274, 2014.
  • 24. ALEF K., NANNIPIERI P., TRASAR-CEPEDA C. Arylsulphatase activity. in: Methods in applied soil microbiology and biochemistry. ALEF K., NANNIPIERI P. (eds.), Academic Press. Harcourt Brace & Company, Publishers, London, 1998.
  • 25. ORWIN K.H., WARDLE D.A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907, 2004.
  • 26. CARTER M. R. Soil sampling and methods of analysis. Canadian Society of soil science. Lewis Publishers, London, 1993.
  • 27. NELSON D.W., SOMMERS L.E. Total carbon, organic carbon, and organic matter. In: SPARKS D.L. et al. (eds.) Methods of soil analysis: chemical methods. American Society of Agronomy, Madison, 1201, 1996.
  • 28. ISO 10390:2005. Soil quality - determination of pH.
  • 29. PN-92/R-04016 „Chemical-agricultural analysis of the soil - Marking of the content of assimilable zinc".
  • 30. PN-92/R-04017 „ Chemical-agricultural analysis of the soil - Marking of the content of assimilable copper"
  • 31. StatSoft Inc. (2012): STATISTICA (data analysis software system), version 10.0.
  • 32. MASTO R.E., CHHONKAR P.K., SINGH D., PATRA A.K. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment. Environ. Geol. 38, 1577, 2008.
  • 33. MUSCOLO A., SETTINERI G., ATTINÄ E. Early warning indicators of changes in soil ecosystem functioning. Ecol. Indic. 48, 542, 2015.
  • 34. PRIETZEL J. Arylsulfatase activities in soils of the Black Forest/Germany - seasonal variation and effect of (NH4)2SO4 fertilization. Soil Biol. Biochem. 33, 1317, 2001.
  • 35. GÜLSER F., ERDOGAN E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Asses. 145, 127, 2008.
  • 36. WYSZKOWSKA J., KUCHARSKI M., KUCHARSKI J. Activity of ß-glucosidase, arylsulphatase and phosphatases in soil contaminated with copper. J. Elem. 15 (1), 213, 2010.
  • 37. SPEIR T.W., KETTLES H.A., PERCIVAL H.J., PARSHOTAM A. In soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biol. Biochem. 31, 1953, 1999.
  • 38. KOLESNIKOV S.I., SPIVAKOVA N.A., KAZEEV K.SH. The effect of model soil contamination with Cr, Cu, Ni, and Pb on the biological properties of soils in the dry steppe and semidesert regions of southern Russia. Eurasian Soil Sci. 44 (9), 1094, 2011.
  • 39. STUCZYŃSKI T.I., MCCARTY G.W., SIEBIELEC G. Response of soil microbiological activities to cadmium, lead and zinc salt amendments. J. Environ. Qual. 32, 1346, 2003.
  • 40. KUCHARSKI J., WIECZOREK K., WYSZKOWSKA J. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem. 16 (4), 577, 2011.
  • 41. BOROWIK A., WYSZKOWSKA J., KUCHARSKI J., BAĆMAGA M., BOROS-LAJSZNER E., TOMKIEL M. Sensitivity of soil enzymes to excessive zinc concentrations. J. Elem. 19 (3), 637, 2014.
  • 42. WYSZKOWSKA J., BOROWIK A., KUCHARSKI J., BAĆMAGA M., TOMKIEL M., BOROS-LAJSZNER E. The effect of organic fertilizers on the biochemical properties of soil contaminated with zinc. Plant Soil Environ. 59 (11), 500, 2013.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.