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ABSTRACT 

Nanoplanktons are ubiquitous protozoan zooplankton in a size range of 2 to 20 μm, play key 

ecological roles in aquatic ecosystems. Heterotrophic nanoflagellates are distributed through the 

continental shelf and margin area of the oceans as well as deep-sea. These organisms contribute 

significantly to the total living biomass within these systems, serve as the major top–down control 

on bacterial assemblages, and are an important source of mortality for microalgae and other 

heterotrophic nanoflagellates. From many recent studies, it is generally accepted that HNF is one of 

the most important bacterial consumers. They also function as important remineralizers of organic 

matter and nutrients in aquatic systems. In accordance with these important ecological roles, 

heterotrophic nanoflagellates have been the subject of considerable study both in the field and 

laboratory. 

 

1. MARINE FOOD WEBS AND THE ‘MICROBIAL LOOP’ 

 

Aquatic ecosystems cover about 70% of the surface of our globe and marine environment 

makes up ~ 97% of the aquatic ecosystem. Marine eco-niches are characterized by diverse and 

contrasting physical, chemical and biological characteristics - from the shallow coastal to extreme 

deep-sea habitats. Diverse organisms are inhabitants of the marine ecosystem. From the smallest 

viruses (<0.2 microns) and bacteria (<2 microns) to single-cell marine plants called 

phytoplanktons (2 – 200 microns) to the biggest of mammals – the blue whales (25meter), all play 

a role in the sustainability as these marine organisms remain interdependent on each other through 

“marine food-webs”. Thus marine food-webs represents a ‘network of food chains’ or feeding 

relationships by which energy and nutrients are passed on from one species of living organisms to 

another for growth and reproduction (Fig.1) . 
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Fig. 1 Marine food-webs 

 

2. STRUCTURE AND FUNCTIONING OF MARINE FOOD-CHAINS 

The marine food chains are described in more quantitative terms of the ‘ecological pyramids’ 

or the ‘trophic prisms’ which describes the various stages within the ecological food chain based on 

numbers, biomass or energy. At the individual trophic levels of the prism, marine organisms can be 

broadly classified as the producers, consumers and decomposers, wherein matter is cycled among 

organisms and passed on from producers to consumers at the second trophic level and subsequently 

remineralized by the decomposers to be again brought back to the system for the producers (Fig. 2) 

and shapes the biogeochemical cycling of carbon and nutrients on our planet. 

 

            

 

 

 

Fig. 2 Cycling of matter and energy flow through marine food chains 
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Thus, at the base of ecological pyramids (Fig. 3) we have the Primary Producers of “marine food-

webs” which can be single-cell marine plants called “Phytoplanktons” in the sunlit upper layers 

of the ocean called the euphotic zone, or even “chemo- autotrophic bacteria” in deep-sea 

environments of hydrothermal vents. 

 

Fig. 3 Trophic prism comparing a sunlit phytoplankton based community with a deep sea 

microbe based Hot Vent community 

 

The vast area of the pelagic ocean and euphotic zone, however makes “Phytoplanktons” the most 

important primary producers of our planet. They form the basis of an intricately linked “food web”. 

Through process of photosynthesis and respiration “Phytoplanktons” are responsible for gaseous 

exchanges of carbon-dioxide and oxygen with the atmosphere. 

Until a few decades ago, marine pelagic food webs were depicted as containing only three major 

groups of organisms: algal cells were the primary producers at the bottom of the food chain, they 

were grazed by mesozooplankton (0.2 mm – 20 mm in size), which in turn were grazed by fish. 

This is called the classic food chain or the grazing food chain and results in high productivity that 

supports the fisheries of the world. 
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Fig.  4 Classical marine food-chains 

 

This view of a marine pelagic food chain was challenged during the 1970s and 1980s by scientists 

such as Pomeroy and Azam who showed that there was an alternative pathway of carbon flow that 

led from bacteria to protozoans (nanoflagellates and ciliates) to metazoa, with dissolved organic 

matter (DOM) being utilized as substrate by the bacteria. DOM can enter the pelagic environment 

from a variety of sources: excretion of dissolved organic carbon (DOC) by algal cells, algal cell 

lysis, ‘sloppy grazing’ by mesozooplankton or diffusion from fecal pellets. This food web paradigm 

was called the microbial loop (Fig.  5). This food web is thus driven by recycled carbon. 
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Fig.  5 Role  of Microbes in the marine environment 

 

3. MICROBIAL FOOD WEB MODEL 

The microbial food web refers to the combined trophic interactions among microbes in aquatic 

environments. An important pathway sustaining the marine microbial food-web is the “microbial 

loop”. It describes the process by which bacteria can uptake dissolved organic material (DOM) that 

cannot be directly ingested by larger organisms. DOM includes phytoplankton photosynthates, 

zooplankton wastes and cytoplasm that leaks out of phytoplankton cells. Nanoflagellates and 

ciliates eat these marine bacteria, helping to recycle organic matter back into the marine food web. 

Bacteria also help to facilitate phytoplankton growth by releasing nutrients. 
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 Fig.  6 The Microbial food-web model 

 

A large degree of complexity exists in the interactions that can take place between the micro-

organisms in pelagic food webs which includes: 

 

a) Preferential Grazing - For example, young copepod life stages and ciliates may compete 

for the same food sources, but adult copepods have been observed to graze preferentially on ciliates 

and so may give their offspring a competitive advantage. 

b) Omnivory - It has been discovered that omnivory is very common. For example, both 

copepods and ciliates can be primary and secondary consumers, with ciliates preying on autotrophic 

and heterotrophic flagellates as well as cyanobacteria and bacteria, and copepods grazing on 

phytoplankton and ciliates. 

 

The Microbial Food web components 

The microbial components of webs can be divided into two main size classes- 

 

 

1. Picoplankton (<2µm) including autotrophic prokaryotic and eukaryotic  phytoplankton 

cells and heterotrophic microbes (bacteria and small flagellates). 

 

2. Nanoplankton (2-20µm) with nanophytoplankton, large flagellates and small ciliates. 

Flagellates and ciliates are the most important picoplanktovorous protozoa in most aquatic 

Environments (McManus & Fuhrman, 1988, Sander et al; 1992). 
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Fig.  7 Size classes of the microbial food web components 

 

4. Position of Nanoflagellates in Trophic Prism 

The position of nanoflagellates in trophic prism is based on it’s nutritional status as either 

autotrophs or heterotrophs. Thus nanoflagellates are residing under either in the producer or primary 

consumer. So their numbers also vary for their different type of grazing stratregy and energy 

utilization. Like this way autotrophic nanoflagellates are coming under the producer rather 

heterotrophic nanoflagellates are grouped as the primary consumer. 

 

5. Role of Nanoflagellates and ciliates in the Microbial Food web 
 

Heterotrophic Bacteria remains at the base of the Microbial food-web. The extent of role of bacteria 

in an ecosystem to act as only "remineralizers" of nutrients or as direct nutritional source for higher 

trophic levels depends on several factors controlling their production and abundance. 

Nanoflagellates are reported bacteriovores and hence control their abundance and production. 

Nanoflagellates can also graze on the phototrophic picoplanktons and Ciliates can graze on both 

bacteria and small flagellates. Thus, the role of Nanoplanktons (Nanoflagellates and ciliates) is 

important to understand the pattern of the energy flow through microbial loop to higher 

zooplanktons and fisheries. Due to the scarcity of diagnostic morphological features, the destruction 

of delicate forms by fixation and the selectivity of culturing efforts we have little knowledge about 

the diversity, autecology and biogeography of heterotrophic nanoflagellates (Lim et al. 1999). 

Chrysomonads or chrysophyceans (class Chrysophyceae) are phototrophic and/or heterotrophic 

nanoflagellates that comprise a major component of the aquatic food web in both marine and 

freshwater systems e.g. colorless chrysomonads together with bicosoecids constitute between 20 - 

50% of the annual average biomass of pelagic HNF (Arndt et al. 2000). 

 

6. Current Status and Significance: 

The population genetics study revealed that the importance of heterotrophic nanoflagellates related 

to climate change, therefore in Polar Regions, heterotrophic nanoflagellates are major consumers of 

bacteria and contribute significantly to the carbon flux from DOC via bacteria to larger organisms 

such as ciliates and metazoans. New research explored that the growth rates of P. imperforate, a 

heterotrophic nanoflagellate increased significantly with increasing temperature in Polar Regions 

(Lee and Fenchel 1972). It has been examined that growth rates of cultured heterotrophic 

nanoflagellates from permanently cold environments (Lee and Fenchel, 1972; Choi and Peters, 

1992; Mayes et al., 1997). Now a days culture of the heterotrophic nanoflagellate species have been 

examined to determine the effects of a wide range of physical and chemical parameters on growth 

rate and other physiological and biogeochemical processes. 

 

5. CONCLUSION 

Several studies have shown that Heterotrophic bacteria consume dissolved organic material 

(DOM) originating from phytoplankton photosynthetic activity, converting it to particulate organic 

material (POC) (Azam et al., 1983). Studies have shown that heterotrophic bacteria can consume 
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10–40% of primary production in the eastern subarctic Pacific (Kirchman et al., 1993) and North 

Atlantic (Ducklow etal., 1993; Li et al., 1993). Heterotrophic bacteria are known to be fed primarily 

by heterotrophic nano- flagellates (HNF), which in turn are cropped mainly by microzooplankton 

(Sherr and Sherr, 1988; Weisse and Scheffel-Möser, 1991). Thus, in addition to micro-zooplankton 

herbivory, HNF bacteriovory can be regarded as a fundamental process in controlling carbon flow 

through microbial food webs in the ocean. 
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