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Background

Mucopolysaccharidoses (MPS) are a group of rare 
genetic diseases with a metabolic etiology. Under 
physiological conditions, glycosaminoglycans (GAGs) 
are digested in lysosomes, resulting in complete 
degradation of their long chains. MPS result from a 
deficiency or lack of activity of lysosomal enzymes 
responsible for the degradation of GAGs present in 
the extracellular space of connective tissue [1]. Dis-
ruption of the GAG metabolic process leads to their 
accumulation in body tissues and causes damage to 
multiple organs [1,2]. 

MPS are progressive diseases that make it diffi-
cult for patients to function in daily life, cause pain, 
and shorten longevity. There are 7 types of MPS, of 
which types I, III, and IV are further divided into sub-
types [3]:

– Type I (Hurler, Hurler-Scheie and Scheie syn-
dromes),

– Type II (Hunter syndrome),
– Type III (Sanfilippo syndrome, with 4 subtypes: 

A, B, C, D),
– Type IV (Morquio syndrome, with 2 subtypes: 

A and B),
– Type VI (Maroteaux-Lamy syndrome),
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ABSTRACT

Background:  Mucopolysaccharidoses (MPS) are a group of rare genetic diseases with a metabolic etiology. 
Currently, there are no effective methods of treating MPS, and new ways of treating patients are constantly 
being sought.

Aim of the study: The purpose of this article is to review the available literature concerning clinical trials 
involving new treatments for MPS.

Material and methods: The review of research literature published between 1999 and 2023 was conducted, 
with a specific focus on the last ten years. The literature for this article was selected from publications avail-
able online in databases such as Google Scholar or PubMed. The research was based on keywords such as 
mucopolysaccharidoses, clinical trials, gene therapy, and MPS. 

Results: A total of 104 publications were considered in the study, including 95 scientific articles and 9 clinical 
trial reports (consisting of 1 FDA approval). Out of those 104 articles, 82 discussed potential future therapies 
for patients with MPS. Among them, as many as 51 focused on gene therapy.

Conclusions: The only currently approved treatments for MPS are enzyme replacement therapy and hemat-
opoietic stem cell transplantation, which are not suitable for all types of MPS and have their limitations. In 
addition, there is no single therapy for all types of MPS, as they are the result of mutations in different genes 
and result from the deficiency of different enzymes. Numerous preclinical and clinical studies are being con-
ducted on therapies for MPS. These include therapies that allow manipulation of cellular pathways, substrate 
reduction, and gene therapy, which is the most promising form of treatment. Some of the studies have suc-
cessfully passed the first and second phases of research.

Keywords: mucopolysaccharidoses, MPS, clinical trials



www.medicalsciencepulse.com

2 Agnieszka Dewalska, Agnieszka rombel-Bryzek

– Type VII (Sly syndrome),
– Type IX (Natowicz syndrome).
MPS have certain features that distinguish them 

from other lysosomal storage diseases (LSDs), e.g., pri-
marily disorders of the osteoarticular system, includ-
ing diff use ossifi cation disorders, also known as dys-
ostosis multiplex, enlargement of the internal organs, 
including the liver, spleen, and tongue; there is also 
often progressive deterioration of vision and hearing 
and thickening of the facial features. As the disease 
progresses, valvular defects, cardiomyopathy, and en-
largement of the heart muscle are observed, as well as 
thickening of the structures of the respiratory system, 
leading to sleep apnea and breathing diffi  culties [1–3]. 
Mental retardation is characteristic in severe Hurler, 
Hunter, and Sly syndromes, and in particular, Sanfi lip-
po syndrome, in which neurodegenerative symptoms 
are most severe and distressing [1,2,4].

Th e diff erences between the types of MPS are 
caused by mutations in other genes and the accumu-
lation of diff erent GAGs [1,2]. Th is feature of MPS 
allows the diagnosis of specifi c types based on exami-
nation of the presence of individual GAGs in urine, 
blood, or cerebrospinal fl uid samples [5].

Diagnosing MPS is often delayed due to its rarity 
and late-appearing symptoms [6]. At the same time, 
early diagnosis is crucial for the successful initiation 
of enzyme replacement therapy (erT) or hemat-
opoietic stem cell transplantation (HSCT), the only 
currently approved treatments for MPS [7,8]. erT 
is available for patients with MPS types I, II, IVA, 
VI, and VII and consists of administering an intra-

venous replacement enzyme to patients. Th is form 
of treatment has a positive eff ect on the changes in 
the respiratory and musculoskeletal systems. Unfor-
tunately, the replacement enzymes do not cross the 
blood-brain barrier and, therefore, do not aff ect the 
progression of damage to the nervous system [8,9]. 
HSCT is recommended for patients younger than 
2 years of age because it must be performed before 
signifi cant mental retardation develops. It is a highly 
eff ective method to prevent progressive osteoarticu-
lar deformities and mental retardation; however, the 
procedure itself carries a high risk of mortality and 
may have negative side eff ects [8].

Delayed therapy initiation may shorten life, em-
phasizing the need for new diagnostic methods, es-
pecially prenatal [10,11], and eff ective therapies for 
all MPS types to enhance patients’ quality of life. 

Aim of the study

Th is study aimed to analyze and review the cur-
rent scientifi c knowledge regarding the future of 
MPS treatment.

Material and methods

A systematic literature search was conducted us-
ing Google Scholar, clinicaltrials.gov, and PubMed 
databases. Th e search was focused on identifying 
studies concentrated on MPS and current clinical tri-

figure 1. flowchart of study selection [12]
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als to fi nd the best treatment. Keywords used for the 
research included: “mucopolysaccharidoses”, “MPS”, 
and “glycosaminoglycans”. A total of 273 articles 
were identifi ed and, after excluding duplicate arti-
cles, 244 were included for review. Another 86 arti-
cles were excluded because they did not meet the in-
clusion criteria for this topic, which included articles 
about currently used methods, mandatory payment 
to access the article, or a small number of citations, 
leaving 158 articles for the following analysis. Out of 
these, 63 articles were excluded because of small pa-
tient groups and used procedures or drugs that did 
not pass preclinical trials. At this point, 86 articles, 
8 clinical trial reports, and 1 fDA drug approval re-
mained and were included in the review (figure 1).

Results

Th erapies in clinical trials

Due to the problems in performing erT and 
HSCT in patients and the lack of eff ective therapies 
for patients with MPS types III and IX, research is 
constantly being conducted to fi nd safe treatments 
that could not only increase patient comfort but 
also allow full recovery in the future. It was one of 
the conditions to eliminate articles about currently 
approved methods. Studies and clinical trial reports 
used in this analysis focused on substrate reduction 
therapy, manipulation of pro-infl ammatory signaling 
pathways, and gene therapy.

Substrate reduction therapy

Substrate reduction therapy, an investigational 
treatment for MPS, aims to inhibit GAGs synthesis, 

reducing their body levels [8]. Th is method, utilizing 
small molecules that cross the blood-brain barrier, 
shows potential advantages in addressing central 
nervous system symptoms [13,14].

Th e process of GAG synthesis is regulated by the 
epidermal growth factor (eGf) receptor pathway, as 
eGf-mediated signal transduction regulates the ex-
pression of genes encoding specifi c enzymes involved 
in GAG production. To inhibit eGf receptor tyrosine 
kinase activation, genistein, a soy isofl avone showing 
structural similarity to 17β-estradiol, has been used 
[15–18]. 

Th us, it was the fi rst molecule proposed as a po-
tential drug for substrate reduction therapy in MPS 
patients, especially those with neurological manifes-
tations. In this way, gene expression-targeted isofl a-
vone therapy (GeT IT) was introduced into clinical 
trials in patients with Sanfi lippo syndrome [14]. Th e 
expected eff ect of substrate reduction therapy on the 
patient’s cells is shown in figure 2.

Initial pilot studies show promising results, as 
oral administration of 5 mg/kg/day of genistein to 
patients with MPS type III showed a reduction in 
GAG urinary excretion along with improvement in 
behavior and reduced progression of neurological 
changes. It was hypothesized that higher doses might 
produce a better eff ect [18,19,20].

However, doubling the genistein dose in a subse-
quent trial involving 30 patients did not translate into 
clinical improvement [21]. Safety studies with doses 
up to 150 mg/kg/day were conducted, revealing un-
certain clinical effi  cacy, and requiring further inves-
tigation [22]. An interesting observation was made 
by Dr. Marucha’s team, who used genistein in seven 
patients with Hunter syndrome who were not eligible 
for erT. Th e administration of isofl avones increased 
the elasticity of the connective tissue and, in particu-
lar, improved the range of motion of the joints [23].

figure 2. Diagram of the action of substrate reduction therapy on a cell [8]
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Although genistein has not yet shown significant 
improvements in neurological outcomes, substrate 
reduction therapy remains an attractive approach for 
the treatment of MPS. It is possible that the identifi-
cation of new drugs (e.g., inhibitors of specific steps 
in GAG synthesis) could provide better results.

A critical aspect of new therapy research involves 
secondarily stored substrates, previously considered 
clinically irrelevant. However, lipids, glycosphingoli-
pids, phospholipids, and cholesterol have been rec-
ognized as inflammation indicators during excessive 
storage, influencing the disease’s pathogenesis [24,25]. 
Accordingly, an attempt was made to treat patients 
with miglustat (N-butyl-deoxynojirimycin, NB-DNJ), 
an iminosugar that inhibits the synthesis of glucosyl-
ceramide, a precursor to the synthesis of gangliosides 
Gm1 and Gm2. The therapeutic goal was to reduce 
the secondary storage of gangliosides in patients with 
severe central nervous system involvement. Miglus-
tat is a drug approved for the treatment of Gaucher 
and Niemann-Pick type C diseases. The initial studies 
conducted in animal models confirmed a reduction in 
Gm2 gangliosides and neuroinflammation, as well as 
an improvement in the animal’s behavior [26].

Subsequently, miglustat was administered to pa-
tients with Sanfilippo syndrome in a clinical trial; the 
same doses were used as in patients with Niemann-
Pick disease type C, but despite promising evidence, 
no significantly reduced ganglioside levels in CSF or 
improvement in neurological impairment were ob-
served [27]. 

Manipulation of pro-inflammatory  
signaling pathways

Storage, both primary and secondary, leads to the 
activation of signal transduction pathways, especial-
ly inflammation. Some researchers hypothesize that 
this mechanism is responsible for the pathophysiol-
ogy of some of the most devastating symptoms of 
MPS, including central nervous system or osteoar-
ticular involvement, among others.

In the central nervous system, pro-inflammatory 
states are associated with the activation of micro-
glia, and secretion of inflammatory cytokines and 
chemokines, including tumor necrosis factor-alpha 
(TNF-alpha), interleukins (IL-1β, IL-6), and macro-
phage inflammatory protein 1-alpha (CCL3), lead-
ing to chronic brain inflammation [28,29]. Exploit-
ing these signaling pathways may represent a novel 
therapeutic target. Of particular interest in this con-
text is the TLR4 signaling pathway [14]. Studies 
have shown that activation of TLR4 pathways led to 
altered STAT1 and STAT3 expression, which in turn 
results in an increase in TNF-ɑ levels in patient tis-
sues. In experimental animal models with MPS, 

treatment with the anti-TNF-ɑ drug, infliximab, was 
attempted. In rats with Maroteaux-Lamy syndrome, 
a reduction in serum TNF-ɑ levels and the number 
of apoptotic cells in articular cartilage was confirmed 
[30]. Animals treated with ERT in combination with 
infliximab showed a significant decrease in TNF-ɑ 
levels compared to untreated animals. In addition, 
improvements in bone length and mobility were ob-
served, while rats treated with ERT alone showed 
weaker treatment effects [31].

Based on the encouraging results of the preclini-
cal study, anti-TNF-ɑ treatment has entered the clini-
cal trial phase in patients with MPS types I, II, and 
VI. The focus of the study was to test the safety and 
efficacy of subcutaneously administered adalimumab 
against osteoarticular symptoms [32]. The positive 
results will allow for the future introduction of an 
ERT-based therapy in combination with anti-TNF-ɑ 
drugs, which could offer the chance to improve os-
teoarticular symptoms in the most severely affected 
patients.

Another drug with similar properties is pentosan 
polysulfate (PPS), a drug approved by the Food and 
Drug Administration (FDA) as an anti-inflammatory 
and prochondrogenic agent [33]. It has been shown 
to improve the clinical signs of disease in ERT-treat-
ed rats with MPS type VI, reducing urinary levels of 
GAGs and IL-8 and TNF-ɑ levels in tissues and the 
cerebrospinal fluid [31], and was additionally effec-
tive in improving clinical outcomes even when the 
treatment was used as monotherapy [34].

PPS treatment was also useful in improving the 
vitreous cartilage of the trachea, motor skills were 
found to improve, and craniofacial and dental chang-
es were reduced, along with a decrease in their typical 
rough appearance [35]. In addition, the study investi-
gated the safety and efficacy of treating mobility and 
pain in patients with MPS type I with PPS in combi-
nation with ERT [36]. The drug was not only well tol-
erated but also significantly reduced the amount of 
GAGs excreted in the urine, improved mobility, and 
reduced joint pain.

Gene therapy

Gene therapy represents one of the most promis-
ing forms of treatment for patients with genetic dis-
eases. The introduction of a therapeutic gene into the 
patient’s cells is designed to correct the expression of 
defective genes and permanently express lysosomal 
enzymes. Approximately 5–15% of lysosomal en-
zyme activity is sufficient to maintain the patient’s 
healthy state, and if the deficient enzyme is produced 
by one organ, uptake by other organs is possible. In 
addition, the pathophysiology of MPS is now well un-
derstood, which greatly facilitates the development 



Medical Science Pulse 2024 (18) 3

5Clinical trials of new therapies for mucopolysaccharidoses

of therapeutic genes and the vectors needed for them 
[37–39].

Currently, there are two approaches to treatment 
with gene therapy: in vivo and ex vivo therapy. A sche-
matic of how gene therapy works in vivo is shown in 
figure 3, while ex vivo is shown in figure 4.

Th e fi rst adeno-associated virus (AAV) gene 
therapy was approved by the european Medicines 

Agency in 2012. Th is was the drug Glybera®, alipo-
gene tiparvovec, produced for patients suff ering 
from lipoprotein lipase defi ciencies [40]. further 
studies are currently underway in the USA and some 
european countries, including Poland and Austral-
ia. Phase I and II clinical trials are being conducted 
for patients with MPS types I, II, IIIA, IIIB, and VI 
[41–48].

figure 3. Th e principle of in vivo gene therapy [48]

figure 4. Th e principle of ex vivo gene therapy [48]

for the Hurler syndrome, trials of ex vivo gene 
therapy using stem cells transduced with lentiviral 
vectors are ongoing [49], while for other MPS, the 

main clinical trial involves in vivo therapy with an 
AAV vector. It is capable of transducing both dividing 
and non-dividing cells and promotes long-term ex-
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pression in infected cells. Compared to retroviruses 
and lentiviruses, it has low genotoxicity because the 
genome of the AAV vector is present as an episome. 
Additionally, several serotype variants have been 
identified for humans and primates, and each sero-
type has a unique pattern of tissue tropism, which 
has great potential in the context of gene therapy 
[37,50,51].

However, AAV vector genomes remain episomal 
in target cells and are rarely integrated into recipient 
genomes. In comparison, lentiviral and retroviral 
vectors can integrate stably into host cell genomes, 
leading to insertional mutagenesis. In addition, AAV 
is a parvovirus with induced replication defects, so 
it requires a so-called helper virus for replication. 
It is also worth noting that antibodies to the AAV2 
vector are detected in about 80% of people due to 
previous infections, potentially reducing efficacy 
and safety in patients treated with gene therapy 
[52–55]. Negative effects on liver transduction with 
the AAV8 vector and reduced positive effects on 
the skeletal system in a cat model of Sly syndrome 
have also been confirmed [56]. Among the ways to 
overcome the host immune response are modifica-
tions of the vector and removal of antibodies by 
plasmapheresis, use of immunosuppressants, and 
simultaneous administration of empty AAV vectors 
as bait [57–59]. 

Gene therapy was supposed to offer hope for 
a lasting improvement in neurological symptoms. 
However, as it turned out, even injecting an AAV vec-
tor into the body does not overcome the blood-brain 
barrier. Therefore, the effects after administration of 
recombinant AAV into the intracerebral space were 
investigated, which significantly reduced the amount 
of storage material and improved behavioral patholo-
gies in mouse models of MPS types I, IIIA, IIIB, and 
VII, but histopathological studies showed improve-
ment only in the area adjacent to the injection site 
[60–69]. Given these conclusions, studies were then 
conducted with multisite administration, resulting 
in the transduction of rAAV vectors into the wider 
brain space. This resulted in significant improvement 
in GAG accumulation and cognitive function as well 
as behavioral symptoms in both rodents and large 
animals [70,71]. 

In 2013 and again in 2017, Lysogene completed 
two clinical trials for intracerebral injection of rAAV 
in patients with Sanfilippo syndrome types A and 
B. The company developed the rAAV10 vector ex-
pressing the hSGSH and SUMF1 genes, which were 
administered intracerebrally and had no side effects 
in patients monitored for one year after administra-
tion. In addition, improvements in brain atrophy and 
behavior were observed in some patients [43,44,72]. 
Also in 2017, UniQure completed a Phase I and Phase 
II clinical trial in four children who were administered 

rAAV2/5 containing the NAGLU gene in 16 intersti-
tial deposits, four of which were in the cerebellum. 
Subsequently, a NAGLU activity of 15–20% was de-
tected in the cerebrospinal fluid [73].

Intrathecal or intravenous administration is one 
of the less invasive delivery methods that effectively 
transduce genes to many tissues, including the CNS. 
The study was performed in large mammals, in which 
the transduction of different rAAV serotypes into the 
CNS after administration into the cerebrospinal flu-
id was compared. This study demonstrates the high 
transduction efficiency of rAAV9 in extensive CNS le-
sions [74–76]. Mouse and cat models of MPS types 
I, IIIA, IIIB, and VII were also observed, in which 
intrathecal administration of the rAAV9 vector cor-
rected the pathological changes in the central nerv-
ous system [77–80]. Furthermore, the efficiency of 
gene transfer with rAAV9 proved to be significantly 
better than when rAAV1, 6, 7, or 8 were adminis-
tered, and additionally, rAAV9 resulted in extensive 
neuronal transduction in a neonatal mice model. At 
the same time, rAAV2 and 5 showed the lowest trans-
duction efficiency of the other recombinant viral vec-
tors [81]. 

It is worth noting that the use of rAAV9 in a sin-
gle systemic administration resulted in a significant 
increase in lysosomal enzyme activity, not only in the 
CNS but also in the visceral organs in mouse mod-
els of MPS IIIA and IIIB [82,83]. The positive results 
of these studies are leading to ongoing clinical trials 
in patients with Sanfilippo syndrome types A and B, 
in whom the rAAV9 vector is administered intrave-
nously [45,46].

A continuing challenge for gene therapy remains 
the delivery of sufficient amounts of lysosomal en-
zymes for avascular bone and cartilage lesions. To 
improve the osteochondral components, studies 
were performed on the insertion of aspartic acid 
octapeptide (D8) into the C-terminus of tissue non-
specific alkaline phosphatase and the N-terminus of 
GUS and GALNS into the AAV2 vector, which signifi-
cantly increased enzyme delivery to bone [11,84,85]. 
Based on the experimental results, a vector targeting 
bone with a significantly higher affinity for hydroxya-
patite was explored. This was accomplished via an 
oligopeptide D8 being inserted into the N-terminal 
region of the VP2 capsid protein. Three months after 
injection, enzyme activity in bone was 4.7-fold high-
er than when the unmodified vector was used. After 
immunohistochemical analysis, it was found that the 
rAAV2 vector increased GALNS expression and activ-
ity in the bones of mice with MPS type IVA [86]. 

Genome editing, in which DNA or RNA sequences 
are altered, offers great hope for many patients. The 
editing process uses nucleases to create double breaks 
in DNA strands at specific locations in the genome. 
The resulting breaks are repaired by terminal non-
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homologous splicing or homologous recombination. 
Four families of artificial nucleases include [37,87]: 

– meganucleases, 
– nucleases with a zinc finger motif (ZFN),
– nucleases based on the transcription-activating 

effector (TALEN),
– protein 9 – associated with clustered regular-

ly-interspaced short palindromic repeats (CRISPR/
Cas9).

Using ZFN, a corrective gene at the albumin lo-
cus was inserted into the AAV8 vector so that strong 
expression of IDUA and IDS was observed in mouse 
models after administration of the vector. The in-
crease in enzymatic activity of IDS in the blood and 
other tissues of the mice significantly reduced the 
amount of stored GAGs in visceral organs. In addi-
tion, the concentrations of dermatan sulfate and 
heparan sulfate in the brain were reduced, leading 
to an improvement in neurocognitive symptoms 
[88–90]. Based on the positive results, phase I 
and II  clinical trials are currently being conducted 
for patients with Hurler and Hunter syndromes  
[41,42].

The possibility of using CRISPR/Cas9 to treat 
rare genetic diseases was also investigated. A na-
noemulsion containing a recombinant CRISPR/Cas9 
plasmid and a donor oligonucleotide was developed. 
An oligonucleotide homologous to the mutated re-
gion (p.Trp402* region) introduced into fibroblast 
cultures from MPS type I patients was synthesized 

with the correct nucleotide. Carrying out the genetic 
modification resulted in a significant increase in the 
activity of the IDUA enzyme and a reduction in the 
size of the lysosome [91]. 

Studies were also conducted on the use of ex vivo 
therapy in animal models with MPS types I, II, IIIA, 
and IIIB [92–95]. Phase I and II clinical trials were 
then initiated in Hurler syndrome patients to evalu-
ate the safety, tolerability, and efficacy of IDUA gene-
transduced autologous CD34+ lentiviral cells. The 
endpoint of the study measured the level of IDUA ac-
tivity in the patient’s peripheral blood one year after 
transplantation [49].

Conclusions

The only currently approved therapies for muco-
polysaccharidosis are enzyme replacement therapy 
and hematopoietic stem cell transplantation.

Currently, there is no single therapy for all muco-
polysaccharidoses because they are based on muta-
tions in different genes and result from deficiencies 
in different enzymes. Therefore, it is important to 
diagnose the disease at an early stage and tailor the 
therapy to the specific type of MPS.

Many preclinical and clinical studies are being 
conducted on therapies targeting mucopolysaccha-
ridoses. Some studies have successfully completed 
phase I and phase II trials.
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