PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 18 | 2 |

Tytuł artykułu

Influence of reservoirs created by small dams on the activity of bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Freshwater systems have been profoundly changed by the construction of dams, and the influence of dams on bat activity is poorly understood. In this study, we analyzed the effects of small dams along mountain streams on local bat communities. This work was carried out in five small streams located in the NE of Portugal using bioacoustic surveys during the summer of 2011. The present study confirms that, in the northeast areas of Portugal, the majority of bat species use artificial bodies of water for either drinking or foraging, but species differed in terms of their activity levels over the reservoirs when compared with intact stream habitats. As predicted, small dams in the study area were important centers of overall bat activity relative to other sampling areas. At the same time, feeding activity was also higher in the flooded areas. We also found that Pipistrellus pipistrellus, Myotis daubentonii, Pipistrellus kuhlii, Pipistrellus pygmaeus/Miniopterus schreibersii, Tadarida teniotis and Nyctalus leisleri/Eptesicus serotinus benefited from the presence of dam reservoirs. Hypsugo savii activity was also mostly recorded at reservoir points. However, the highest number of endangered and rare species was recorded at an intact stream habitat. This result emphasizes the relevance of riparian habitats for bats, especially for the most endangered species. The relationship between dam availability, riparian quality and bat diversity suggested that the changes in the streams promoted by damming could affect both bat species richness and activity levels, leading to changes in the overall composition of the bat community. In conclusion, this study found that small reservoirs have a significant influence on bat activity. However, dams appear to primarily benefit the most common species, while the endangered species were associated with riparian habitats. Therefore, for conservation proposes of the local bat community, riparian areas appear to be more important than reservoirs. Thus, this study provides a better understanding of the impact of small dams on bats contributing to the future management and conservation of bat species.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

2

Opis fizyczny

p.395-408,fig.,ref.

Twórcy

autor
  • SPVS - Portuguese Wildlife Society, Department of Biology, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
  • CBMA - Centre of Molecular and Environmental Biology, Minho University, Biology Department, Campus de Gualtar, 4710-057 Braga, Portugal
autor
  • SPVS - Portuguese Wildlife Society, Department of Biology, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
  • CBMA - Centre of Molecular and Environmental Biology, Minho University, Biology Department, Campus de Gualtar, 4710-057 Braga, Portugal
  • SPVS - Portuguese Wildlife Society, Department of Biology, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
  • Azorean Biodiversity Group, Department de Ciencias Agrarias, University of Azores, Rua Capitao Joao d'Avila, sn. Pico da Urze, 9700-042 Angra do Heroismo, Portugal
autor
  • SPVS - Portuguese Wildlife Society, Department of Biology, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
  • CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus Universitaario de Santiago, 3810-193 Aveiro, Portugal
  • SPVS - Portuguese Wildlife Society, Department of Biology, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
  • CBMA - Centre of Molecular and Environmental Biology, Minho University, Biology Department, Campus de Gualtar, 4710-057 Braga, Portugal
  • CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
autor
  • SPVS - Portuguese Wildlife Society, Department of Biology, Minho University, Campus de Gualtar, 4710-057 Braga, Portugal
  • CBMA - Centre of Molecular and Environmental Biology, Minho University, Biology Department, Campus de Gualtar, 4710-057 Braga, Portugal
  • CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal

Bibliografia

  • 1. Ancillotto, L., L. Santini, N. Ranc, L. Maiorano, and D. Russo. 2016. Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. The Science of Nature, 103: 1–8. Google Scholar
  • 2. APA [Agência Portu gu esa do Ambiente]. 2010. Barragens de Portugal. Agência Portu gu esa do Ambiente. Available at http://www.apambiente.pt/index.php?ref=77&subref=839. Google Scholar
  • 3. Arlettaz, R. 1996a. Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Animal Behaviour, 51: 1–11. Google Scholar
  • 4. Arlettaz, R. 1996b. Foraging behaviour of the gleaning bat Myotis nattereri (Chiroptera, Vespertilionidae) in the Swiss Alps. Mammalia, 60: 181–186. Google Scholar
  • 5. Arlettaz, R. 1999. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology, 68: 460–471. Google Scholar
  • 6. Arlettaz, R., S. Godat, and H. Meyer. 2000. Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93: 55–60. Google Scholar
  • 7. Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67: 48. Google Scholar
  • 8. Biscardi, S., D. Russo, V. Casciani, D. Cesarini, M. Mei, and L. Boitani. 2007. Foraging requirements of the endangered long-fingered bat: the influence of micro-habitat structure, wat er quality and prey type. Journal of Zoology (London), 273: 372–381. Google Scholar
  • 9. Boyles, J. G., P. M. Cryan, G. F. Mccracken, and T. H. Kunz. 2011. Economic importance of bats in agriculture. Science, 332: 41–42. Google Scholar
  • 10. Brandão, R. A., and A. F. B. Araújo. 2008. Changes in anuran species richness and abundance resulting from hydro electric dam flooding in Central Brazil. Biotropica, 40: 263–266. Google Scholar
  • 11. Bredenhand, E., and M. Samways. 2009. Impact of a dam on benthic macroinvertebrates in a small river in a biodiversity hotspot: Cape Floristic Region, South Africa. Journal of Insect Conservation, 13: 297–307. Google Scholar
  • 12. Britzke, E. R. 2004. Designing monitoring programs using frequency-division bat detectors: active versus passive sampling. Pp. 79–83, in Bat echolocation research: tools, techniques, and analysis ( R. M. Brigham, E. K. V. Kalko, G. Jones, S. Parsons, and H. J. G. A. Limpens, eds.). Bat Conservation International, Austin, TX, 167 pp. Google Scholar
  • 13. Britzke, E. R., K. L. Murray, B. M. Hadley, and L. W. Robbins. 1999. Measuring bat activity with Anabat II System. Bat Research News, 40: 1–3. Google Scholar
  • 14. Cabral, M. J., J. Almeida, P. R. Almeida, T. Dellinger, N. Ferrand De Almeida, M. Oliveira, J. Palmeirim, A. Queirós, L. Rogado, and M. Santos-Reis. 2006. Livro Vermelho dos Vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa, 459 pp. Google Scholar
  • 15. Cleveland, C. J., M. Betke, P. Federico, J. D. Frank, T. G. Hallam, J. Horn, J. D. López, G. F. Mccracken, R. A. Medellin, A. Moreno-Valdez , et al. 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Frontiers in Ecology and the Environment, 4: 238–243. Google Scholar
  • 16. Collen, P., and R. J. Gibson. 2000. The general ecology of beavers (Castor spp.), as related to their influence on stream ecosystems and riparian habitats, and the subsequent effects on fish — a review. Reviews in Fish Biology and Fisheries, 10: 439–461. Google Scholar
  • 17. Corben, C., and G. M. Fellers. 2001. Choosing the ‘correct’ bat detector — a reply. Acta Chiropterologica, 3: 253–256. Google Scholar
  • 18. Cortes, R. M. V., M. T. Ferreira, S. V. Oliveira and F. Godinho. 1998. Contrasting impact of small dams on the macro - invertebrates of two Iberian mountain rivers. Hydro biologia, 389: 51–61. Google Scholar
  • 19. Cosson, J. F., S. Ringuet, O. Claessens, J. C. De Massary, A. Dalecky, J. F. Villiers, L. Granjon, and J. M. Pons. 1999. Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biological Conservation, 91: 213–222. Google Scholar
  • 20. Dalbeck, L., B. Lüscher, and D. Ohlhoff. 2007. Beaver ponds as habitat of amphibian communities in a central European highland. Amphibia-Reptilia, 28: 493–501. Google Scholar
  • 21. Dietz, C., D. Nill, O. Von Helversen, P. H. C. Lina, and A. M. Hutson. 2009. Bats of Britain, Europe and Northwest Africa. A&C Black, London, 400 pp. Google Scholar
  • 22. Ducummon, S. L. 2000. Ecological and economic importance of bats. Bat Conservation International, Austin, TX. Google Scholar
  • 23. EEA [European Environ ment Agency]. 2008. Reservoirs and dams. European Environ ment Agency. Available at http://www.eea.europa.eu/themes/water/european-waters/reservoirs-and-dams. Google Scholar
  • 24. Entwistle, A. C., P. A. Racey, and J. R. Speakman. 1996. Habitat exploitation by a gleaning bat, Plecotus auritus. Philosophical Transactions of the Royal Society of London, 351B: 921–931. Google Scholar
  • 25. Evin, A., V. Lecoq, M.-O. Durand, L. Tillon, and J.-M. Pons. 2009. A new species for the French bat list: Myotis escalerai (Chiroptera: Vespertilionidae). Mammalia, 73: 142–144. Google Scholar
  • 26. Fukui, D. A. I., M. Murakami, S. Nakano, and T. Aoi. 2006. Effect of emergent aquatic insects on bat foraging in a riparian forest. Journal of Animal Ecology, 75: 1252–1258. Google Scholar
  • 27. Gangloff, M. M., E. E. Hartfield, D. C. Werneke, and J. W. Feminella. 2011. Associations between small dams and mollusk assemblages in Alabama streams. Journal of the North American Benthological Society, 30: 1107–1116. Google Scholar
  • 28. Greif, S., and B. M. Siemers. 2010. Innate recognition of water bodies in echolocating bats. Nature communications, 1: 107. Google Scholar
  • 29. Griffiths, S. R. 2013. Echolocating bats emit terminal phase buzz calls while drinking on the wing. Behavioural Processes, 98: 58–60. Google Scholar
  • 30. Grindal, S. D., J. L. Morissette, and R. M. Brigham. 1999.Con centration of bat activity in riparian habitats over an ele vational gradient. Canadian Journal of Zoology, 77: 972–977. Google Scholar
  • 31. Harrell, F. E., C. Dupont , et al. 2016. Hmisc: Harr ell Miscellaneous. R package version 3.17-4 [Online]. Available at https://CRAN.R-project.org/package=Hmisc. Google Scholar
  • 32. Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6: 65–70. Google Scholar
  • 33. Inag, I. P. [INSTITUTO NACIONAL DA ÁGUA, INSTITUTO PÙBLICO]. 2008. Tipologia de rios em Portugal Continental no âmbito da implementação da Directiva Quadro da Água. I - Caracterização abiótica. Ministério do Ambiente, do Orde namento do Território e do Desenvolvimento Regional. In stituto da Água, I. P., 32 pp. Available at http://dspace.uevora.pt/rdpc/bitstream/10174/6604/1/INAG%202008%20-Tipologia%20rios%20Portugal%20Continental.pdf. Google Scholar
  • 34. Ibáñez, C., J. L. García-Mudarra, M. Ruedi, B. Stadelmann, and J. Juste. 2006. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterologica, 8: 277–297. Google Scholar
  • 35. Iglesias, A., L. Garrote, F. Flores, and M. Moneo. 2007. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resources Management, 21: 775–788. Google Scholar
  • 36. Jones, G., and J. M. V. Rayner. 1989. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behavioral Ecology and Sociobiology, 25: 183–191. Google Scholar
  • 37. Jones, G., D. S. Jacobs, T. H. Kunz, M. R. Willig, and P. A. Racey. 2009. Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8: 93–115. Google Scholar
  • 38. Kingsford, R. 1992. Maned ducks and farm dams: a success story. Emu, 92: 163–169. Google Scholar
  • 39. Kingsford, R. T., and W. Johnson. 1998. Impact of water diver sions on colonially-nesting waterbirds in the Macquarie Marshes of arid Australia. Colonial Waterbirds, 21: 159–170. Google Scholar
  • 40. Kokurewicz, T. 1995. Increased population of Daubenton's bat (Myotis daubentonii (Kuhl, 1819)) (Chiroptera: Vespertilionidae) in Poland. Myotis, 32–33: 155–161. Google Scholar
  • 41. Korine, C., R. Adams, D. Russo, M. Fisher-Phelps, and D. Jacobs. 2016. Bats and water: anthropogenic alterations threaten global bat populations. Pp. 215–241, in Bats in the Anthropocene: conservation of bats in a changing world ( C. C. Voigt and T. Kingston, eds.) Springer Inter national Publishing, Cham, Switzerland, ix + 606 pp. Google Scholar
  • 42. Krausman, P. R., S. S. Rosenstock, and J. W. C. III . 2006. Developed waters for wildlife: science, perception, values, and controversy. Wildlife Society Bulletin, 34: 563–569. Google Scholar
  • 43. Kuznetsova, A., R. H. B. Christensen, C. Bavay, and P. B. Brockhoff. 2015. Automated mixed ANOVA modeling of sensory and consumer data. Food Quality and Preference, 40A: 31–38. Google Scholar
  • 44. Lavee, H., A. C. Imeson, and P. Sarah. 1998. The impact of climate change on geomorphology and desertification along a mediterranean-arid transect. Land Degradation & Development, 9: 407–422. Google Scholar
  • 45. Lisón, F., and J. F. Calvo. 2011. The significance of water infrastructures for the conservation of bats in a semiarid Mediterranean landscape. Animal Conservation, 14: 533–541. Google Scholar
  • 46. Lloyd, A., B. Law, and R. Goldingay. 2006. Bat activity on riparian zones and upper slopes in Australian timber production forests and the effectiveness of riparian buffers. Biological Conservation, 129: 207–220. Google Scholar
  • 47. Metts, B. S., J. D. Lanham, and K. R. Russell. 2001. Evaluation of herpetofaunal communities on upland streams and beaver-impounded streams in the Upper Piedmont of South Carolina. The American Midland Naturalist, 145: 54–65. Google Scholar
  • 48. Miller, B. W. 2001. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropterologica, 3: 93–105. Google Scholar
  • 49. Nardone, V., L. Cistrone, I. Di Salvo, A. Ariano, A. Migliozzi, C. Allegrini, L. Ancillotto, A. Fulco, and D. Russo. 2015. How to be a male at different elevations: Ecology of intra-sexual segregation in the trawling bat Myotis daubentonii. PLoS ONE, 10: e0134573. Google Scholar
  • 50. Nilsson, C., and K. Berggren. 2000. Alterations of riparian ecosystems caused by river regulation. BioScience, 50: 783–792. Google Scholar
  • 51. Nummi, P. 1992. The importance of beaver ponds to waterfowl broods: an experiment and natural tests. Annales Zoologici Fennici, 29: 47–55. Google Scholar
  • 52. Ober, H. K., and J. P. Hayes. 2008. Influence of vegetation on bat use of riparian areas at multiple spatial scales. Journal of Wildlife Management, 72: 396–404. Google Scholar
  • 53. Obrist, M. K., R. Boesch, and P. F. Ckiger. 2004. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia, 68: 16. Google Scholar
  • 54. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens , et al. 2016. Vegan: community ecology package. R package version 2.3-5. Available at https://cran.r-project.org/web/packages/vegan/index.html. Google Scholar
  • 55. Ovidio, M., and J.-C. Philippart. 2002. The impact of small physical obstacles on upstream movements of six species of fish. Hydrobiologia, 483: 55–69. Google Scholar
  • 56. Pires, A., I. Cowx, and M. Coelho. 2000. Benthic macroinvertebrate communities of intermittent streams in the middle reaches of the Guadiana Basin (Portugal). Hydrobiologia, 435: 167–175. Google Scholar
  • 57. Popa-Lisseanu, A. G., F. Bontadina, and C. Ibanez. 2009. Giant noctule bats face conflicting constraints between roost ing and foraging in a fragmented and heterogeneous landscape. Journal of Zoology, 278: 126–133. Google Scholar
  • 58. Quinn, G. G. P., and M. J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, xviii + 537 pp. Google Scholar
  • 59. R CORE TEAM. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/. Google Scholar
  • 60. Ragab, R., and C. Prudhomme. 2002. SW — Soil and water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st Century. Biosystems Engineering, 81: 3–34. Google Scholar
  • 61. Rainho, A. 2007. Summer foraging habitats of bats in a Mediterra nean region of the Iberian Peninsula. Acta Chiropterologica, 9: 171–181. Google Scholar
  • 62. Rainho, A., L. Rodrigues, S. Bicho, C. Franco, and J. M. Palmeirim. 1998. Morcegos das Áreas Protegidas Portuguesas I (PN Peneda-Gerês, PN Montesinho, PN Alvão, PN Serra da Estrela, PN Serras de Aire e Candeeiros, PN Serra de S. Mamede, PN Arrábida, RN Estuário do Sado e PN Alen tejano e Costa Vicentina). Estudos de Biologia e Conservação da Natureza, ICN, Lisboa, Portugal, 118 pp. Google Scholar
  • 63. Rainho, A., P. Alves, F. Amorim, J. T. Marques, L. Rodrigues, H. Rebelo, L. Braz, M. Augusto, P. Barros, N. Pinto , et al. 2013. Atlas dos morcegos de Portugal continental. Instituto da Conservação da Natureza e das Florestas, Lisboa, Portugal, 77 pp. Google Scholar
  • 64. Razgour, O., C. Korine, and D. Saltz. 2010. Pond characteristics as determinants of species diversity and community composition in desert bats. Animal Conservation, 13: 505–513. Google Scholar
  • 65. Rebelo, H., and A. Rainho. 2009. Bat conservation and large dams: spatial changes in habitat use caused by Europe's largest reservoir. Endangered Species Research, 8: 61–68. Google Scholar
  • 66. Russell, K. R., C. E. Moorman, J. K. Edwards, B. S. Metts and D. C. Guynn, Jr . 1999. Amphibian and reptile communities associated with beaver (Castor canadensis) ponds and unimpounded streams in the Piedmont of South Carolina. Journal of Freshwater Ecology, 14: 149–158. Google Scholar
  • 67. Russo, D., and G. Jones. 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London), 258: 91–103. Google Scholar
  • 68. Russo, D., and G. Jones. 2003. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography, 26: 197–209. Google Scholar
  • 69. Russo, D., and G. Jones. 2015. Bats as bioindicators: an introduction. Mammalian Biology, 80: 157–158. Google Scholar
  • 70. Russo, D., G. Jones, and M. Mucedda. 2001. Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia, 65: 429. Google Scholar
  • 71. Russo, D., L. Cistrone, G. Jones, and S. Mazzoleni. 2004. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: consequences for conservation. Biological Con servation, 117: 73–81. Google Scholar
  • 72. Russo, D., L. Cistrone, and G. Jones. 2012. Sensory ecology of water detection by bats: a field experiment. PLoS ONE, 7: e48144. Google Scholar
  • 73. Santos, H., J. Juste, C. Ibáñez, J. M. Palmeirim, R. Godinho, F. Amorim, P. Alves, H. Costa, O. De Paz, G. Pérez-Suarez , et al. 2014. Influences of ecology and biogeography on shaping the distributions of cryptic species: three bat tales in Iberia. Biological Journal of the Linnean Society, 112: 150–162. Google Scholar
  • 74. Schofield, H. W. 1996. The ecology and conservation biology of Rhinolophus hipposideros, the lesser horseshoe bat. Ph.D. Thesis, University of Aberdeen, Aberdeen, 198 pp. Google Scholar
  • 75. Scott, S. J., G. Mclaren, G. Jones, and S. Harris. 2010. The impact of riparian habitat quality on the foraging and activity of pipistrelle bats (Pipistrellus spp.). Journal of Zoology (London), 280: 371–378. Google Scholar
  • 76. Seidman, V. M., and C. J. Zabel. 2001. Bat activity along intermittent streams in northwestern California. Journal of Mammalogy, 82: 738–747. Google Scholar
  • 77. Sidorovich, V. E., B. Jędrzejewska, and W. Jędrzejewski. 1996. Winter distribution and abundance of mustelids and beavers in the river valleys of Białowieża Primeval Forest. Acta Theriologica, 41: 155–170. Google Scholar
  • 78. Siemers, B. M., and H.-U. Schnitzler. 2000. Natterer's bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behavioral Ecology and Sociobiology, 47: 400–412. Google Scholar
  • 79. Siemers, B. M., P. Stilz, and H.-U. Schnitzler. 2001. The acoustic advantage of hunting at low heights above water: behavioural experiments on the European ‘trawling’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. The Journal of Experimental Biology, 204: 3843–3854. Google Scholar
  • 80. Tiemann, J. S., D. P. Gillette, M. L. Wildhaber, and D. R. Edds. 2004. Effects of lowhead dams on riffle-dwelling fishes and macroinvertebrates in a Midwestern River. Transactions of the American Fisheries Society, 133: 705–717. Google Scholar
  • 81. Vaughan, N., G. Jones, and S. Harris. 1996. Effects of sewage effluent on the activity of bats (Chiroptera: Vespertilionidae) foraging along rivers. Biological Conservation, 78: 337–343. Google Scholar
  • 82. Vaughan, N., G. Jones and S. Harris. 1997. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. Journal of Applied Ecology, 34: 716–730. Google Scholar
  • 83. Walsh, A. L., and S. Harris. 1996. Factors determining the abundance of vespertilionid bats in Britain: geographical, land class and local habitat relationships. Journal of Applied Ecology, 33: 519–529. Google Scholar
  • 84. Warren, R. D., D. A. Waters, J. D. Altringham, and D. J. Bullock. 2000. The distribution of Daubenton's bats (Myotis daubentonii) and pipistrelle bats (Pipistrellus pipi strellus) (Vespertilionidae) in relation to small-scale variation in riverine habitat. Biological Conservation, 92: 85–91. Google Scholar

Typ dokumentu

Bibliografia

Identyfikator YADDA

bwmeta1.element.agro-f666c392-086c-44f3-a071-a03f1e024ab3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.