PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 18 | 3 |

Tytuł artykułu

Zebrafish: an animal model for research in veterinary medicine

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic disorders including fatty liver disease and diabetes. The zebrafish is also a valuable tool as a model in behavioral studies connected with feeding, predator evasion, habituation and memory or lateralized control of behavior. The aim of the present article is to familiarize the reader with the possibilities of Danio rerio as an experimental model for veterinary medicine.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

3

Opis fizyczny

p.663-674,fig.,ref.

Twórcy

autor
  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
autor
  • Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland

Bibliografia

  • Ackermann GE, Paw BH (2003) Zebrafish: a genetic model for vertebrate organogenesis and human disorders. Front Biosci 8: 1227-1253.
  • Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B (2006) Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17: 4-12.
  • Carney TJ, Dutton KA, Greenhill E, Delfino-Machtn M, Dufourcq P, Blader P, Kelsh RN (2006) A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 133: 4619-4630.
  • Cherry B (2003) Laboratory infection of zebrafish (Danio rerio) and channel catfish (Ictalurus punctatus) with the protozoan parasite Ichthyophthirius multifiliis: A model for parasite persistence. University of Pennsylvania.
  • Chu J, Sadler KC (2009) New school in liver development: lessons from zebrafish. Hepatology 50: 1656-1663.
  • Coyne RS, Hannick L, Shanmugam D, Hostetler JB, Brami D, Joardar VS, Johnson J, Radune D, Singh I, Badger JH, Kumar U, Saier M, Wang Y, Cai H, Gu J, Mather MW, Vaidya AB, Wilkes DE, Rajagopalan V, Asai DJ, Pearson CG, Findly RC, Dickerson HW, Wu M, Martens C, Van de Peer Y, Roos DS, Cassidy-Hanley DM, Clark TG (2011) Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biol 12: 1-26.
  • Davis JM, Haake DA, Ramakrishnan L (2009) Leptospira interrogans stably infects zebrafish embryos, altering phagocyte behavior and homing to specific tissues. PLoS Negl Trop Dis 3: 1-6.
  • Dutton K, Abbas L, Spencer J, Brannon C, Mowbray C, Nikaido M, Kelsh RN, Whitfield TT (2009) A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle. 2: 68-83.
  • Farber SA, Pack M, Ho SY, Johnson ID, Wagner DS, Dosch R, Mullins MC, Hendrickson HS, Hendrickson EK, Halpern ME (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292: 1385-1388.
  • Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34: 643-661.
  • Gudmundsson O, Tryggvadottir SV, Petursdottir T, Halldorsdottir K (2000) Measurements of feed intake and excretion in fish using radiography or chemical indicators. Wat Sci Tech 31: 131-136.
  • Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D, Akassoglou K, Verdin E, Hirschey MD, Stainier DY (2013) Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol 9: 97-104.
  • Haffter P, Odenthal J, Mullins MC, Lin S, Farrell MJ, Vogelsang E, Haas F, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Hopkins N, Nüsslein-Volhard C (1996) Mutations affecting pigmentation and shape of the adult zebrafish. Dev Genes Evol 206: 260-276.
  • Harwood CG, Rao RP (2014): Host pathogen relations: exploring animal models for fungal pathogens. Pathogens 3: 549-562.
  • Huff GR, Huff WE, Rath NC, Balog JM (2000) Turkey osteomyelitis complex. Poult Sci 79: 1050-1056.
  • Kahn CM, Line S (2010) The Merck Veterinary Manual. John Wiley Sons, 10th ed., Hoboken, NJ.
  • Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, Haffter P, Odenthal J, Mullins MC, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Kane DA, Warga RM, Beuchle D, Vogelsang L, Nusslein-Volhard C (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123: 369-389.
  • Kelsh RN, Raible DW (2002) Specification of zebrafish neural crest. Results Probl Cell Differ 40: 216-236.
  • Kent ML, Bishop-Stewart JK (2003) Transmission and tissue distribution of Pseudoloma neurophilia (Microsporidia) of zebrafish, Danio rerio (Hamilton). J Fish Dis 26: 423-426.
  • Kinkel MD, Eames SC, Philipson LH, Prince VE (2010) Intraperitoneal injection into adult zebrafish. J Vis Exp 42: 1-4.
  • Kinkel MD, Prince VE (2009) On the diabetic menu: zebrafish as a model for pancreas development and function. Bioessays 31: 139-152.
  • Landsberg G (2005) Therapeutic agents for the treatment of cognitive dysfunction syndrome in senior dogs. Prog Neuropsychopharmacol Biol Psychiatry 29: 471-479.
  • Levraud JP, Disson O, Kissa K, Bonne I, Cossart P, Herbomel P, Lecuit M (2009) Real-time observation of Listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun 77: 3651-3660.
  • Lieschke GJ, Currie PD (2007): Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8: 353-367.
  • Lom J, Dykovh I (2005) Microsporidian xenomas in fish seen in wider perspective. Folia Parasitol 52: 69-81.
  • Lu MW, Chao YM, Guo TC, Santi N, Evensen O, Kasani SK, Hong JR, Wu JL (2008) The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol Immunol 45: 1146-1152.
  • Ludwig M, Palha N, Torhy C, Briolat V, Colucci-Guyon E, Bremont M, Herbomel P, Boudinot P, Levraud JP (2011) Whole-body analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae. PLoS Pathog 7: 1-11.
  • Matthews RP, Lorent K, Manoral-Mobias R, Huang Y, Gong W, Murray IV, Blair IA, Pack M (2009) TNF{alpha}- dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish s-adenosylhomocysteine hydrolase. Development 136: 865-875.
  • Miklósi A, Andrew RJ (2006) The zebrafish as a model for behavioral studies. Zebrafish 3: 227-234.
  • Neely MN, Pfeifer JD, Caparon M (2002) Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun 70: 3904-3914.
  • O’Toole R, Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb Pathog 37: 41-46.
  • Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3: 235-247.
  • Pedroso GL, Hammes TO, Escobar TD, Fracasso LB, Forgiarini LF, da Silveira TR (2012) Blood collection for biochemical analysis in adult zebrafish. J Vis Exp 63: 1-3.
  • Petrie-Hanson L, Hohn C, Hanson L (2009) Characterization of rag1 mutant zebrafish leukocytes. BMC Immunol 10: 8-10.
  • Phelan PE, Pressley ME, Witten PE, Mellon MT, Blake S, Kim CH (2005) Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio). J Virol 79(3): 1842-1852.
  • Pisharath H (2007) Validation of nitroreductase, a prodrug-activating enzyme, mediated cell death in embryonic zebrafish (Danio rerio). Comp Med 57: 241-246.
  • Podlasz P, Salinen V, Chen YC, Kudo H, Fedorowska N, Panula P (2012) Galanin gene expression and effects of its knock-down on the development of the nervous system in larval zebrafish. J Comp Neurol 520: 3846-3862.
  • Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA (2008) A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens. Cell Microbiol 10: 2312-2325.
  • Ramsay JM, Watral V, Schreck CB, Kent ML (2009) Pseudoloma neurophilia infections in zebrafish Danio rerio: effects of stress on survival, growth, and reproduction. Dis Aquat Organ 88: 69-84.
  • Rathinam SR (2005) Ocular manifestations of leptospirosis. J Postgrad Med 51: 189-94.
  • Sabiiti W, May RC, Pursall ER (2012) Experimental models of cryptococcosis. Int J Microbiol 2012: 1-31.
  • Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N (2005) A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132: 3561-3572.
  • Sanders GE, Batts WN, Winton JR (2003) Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp Med 53: 514-521.
  • Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A, Koster RW, Hurlstone A, Mione M (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5: 1-11.
  • Seeley RJ, Perlmutter A, Seeley VA (1977) Inheritance and longevity of infectious pancreatic necrosis virus in the zebra fish, Brachydanio rerio (Hamilton-Buchanan). Appl Environ Microbiol 34: 50-55.
  • Seth A, Stemple DL, Barroso I (2013) The emerging use of zebrafish to model metabolic disease. Dis Model Mech 6: 1080-1088.
  • Stoletov K, Fang L, Choi SH, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, Miller YI (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res 104: 952-960.
  • Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L (2006) Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun 74: 6108-6117.
  • Tanaka N, Izawa T, Kuwamura M, Higashiguchi N, Kezuka C, Kurata O, Wada S, Yamate J (2014) The first case of infectious spleen and kidney necrosis virus (ISKNV) infection in aquarium- aintained mandarin fish, Siniperca chuatsi (Basilewsky), in Japan. J Fish Dis 37: 401-405.
  • Torraca V, Masud S, Spaink HP, Meijer AH (2014) Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 7: 785-797.
  • Troemel ER (2011) New models of microsporidiosis: infections in Zebrafish, C. elegans, and honey bee. PLoS Pathog 7: 1-4.
  • Ucko M, Colorni A (2005) Mycobacterium marinum infections in fish and humans in Israel. J Clin Microbiol 43: 892-895.
  • van der Sar AM, Musters RJ, van Eeden FJ, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5: 601-611.
  • Verma A, Stevenson B, Adler B (2013) Leptospirosis in horses. Vet Microbiol 167: 61-66.
  • Volkoff H, Peter RE (2006) Feeding behavior of fish and its control. Zebrafish 2: 131-140.
  • Wegner M, Stolt CC (2005) From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 28: 583-588.
  • Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297: 99-102.
  • Wiggers KD, Jacobson NL, Getty R (1971) Atherosclerosis in ruminants. J Anim Sci 32:1037-1041.
  • Wiggers KD, Jacobson NL, Getty R (1971) Experimental atherosclerosis in the young bovine. Atherosclerosis 14: 379-389.
  • Wiles TJ, Bower JM, Redd MJ, Mulvey MA (2009) Use of zebrafish to probe the divergent virulence potentials and toxin requirements of extraintestinal pathogenic Escherichia coli. PLoS Pathog 5: 1-16.
  • Xu X, Zhang L, Weng S, Huang Z, Lu J, Lan D, Zhong X, Yu X, Xu A, He J (2008): A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection. Virology 376: 1-12.
  • Yokobori E, Kojima K, Azuma M, Kang KS, Maejima S, Uchiyama M, Matsuda K (2011) Stimulatory effect of intracerebroventricular administration of orexin A on food intake in the zebrafish, Danio rerio. Peptides 32: 1357-1362
  • Zarkadis IK, Mastellos D, Lambris JD (2001) Phylogenetic aspects of the complement system. Dev Comp Immunol 25: 745-762.
  • Zizioli D, Guarienti M, Tobia C, Gariano G, Borsani G, Bresciani R, Ronca R, Giacopuzzi E, Preti A, Gaudenzi G, Belleri M, Di Salle E, Fabrias G, Casas J, Ribatti D, Monti E, Presta M (2014) Molecular cloning and knockdown of galactocerebrosidase in zebrafish: new insights into the pathogenesis of Krabbe’s disease. Biochim Biophys Acta 1842: 665-675.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f65c7fbd-d843-4dfa-b828-6a22db2ec87b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.