PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 57 | 1 |

Tytuł artykułu

New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A current paradigm accepts the presence of weakly biomineralized animals only, barely above a low metazoan grade of organization in the terminal Neoproterozoic (Ediacaran), and a later, early Cambrian burst of well skeletonized animals. Here we report new assemblages of primarily calcareous shelly fossils from upper Ediacaran (553–542 Ma) carbonates of Spain and Russia (Siberian Platform). The problematic organism Cloudina is found in the Yudoma Group of the southeastern Siberian Platform and different skeletal taxa have been discovered in the terminal Neoproterozoic of several provinces of Spain. New data on the morphology and microstructure of Ediacaran skeletal fossils Cloudina and Namacalathus indicate that the Neoproterozoic skeletal organisms were already reasonably advanced. In total, at least 15 skeletal metazoan genera are recorded worldwide within this interval. This number is comparable with that known for the basal early Cambrian. These data reveal that the terminal Neoproterozoic skeletal bloom was a real precursor of the Cambrian radiation. Cloudina, the oldest animal with a mineralised skeleton on the Siberian Platform, characterises the uppermost Ediacaran strata of the Ust’−Yudoma Formation. While in Siberia Cloudina co−occurs with small skeletal fossils of Cambrian aspect, in Spain Cloudina−bearing carbonates and other Ediacaran skeletal fossils alternate with strata containing rich terminal Neoproterozoic trace fossil assemblages. These finds treated together provide a possibility to correlate transitional Neoproterozoic– lower Cambrian strata around the world. Such a correlation concurs with available isotope and radiometric data and indicates that typical Ediacaran shelly fossils have not crossed the Precambrian–Cambrian boundary.

Wydawca

-

Rocznik

Tom

57

Numer

1

Opis fizyczny

Twórcy

  • Área y Museo de Paleontología, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, c/ Pedro Cerbuna, 12, E-50009 Zaragoza, Spain
autor
autor

Bibliografia

  • Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., and de Rosa, R. 2000. The new animal phylogeny: Reliability and implications. Proceedings of the National Academy of Sciences of the United States of America 97: 4453–4456.
  • Amthor, J.E., Grotzinger, J.P., Schröder, S., Bowring, S.A., Ramezani, J., Martin, M.W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology 31: 431–434.
  • Antcliffe, J.B. and Brasier, M.D. 2008. Charnia at 50: Developmental models for Ediacaran fronds. Palaeontology 51: 11–26.
  • Antcliffe, J.B., Callow, R.H.T., and Brasier, M.D. 2011. The origin of sponges: examination of Precambrian metazoan diversifications. In: The Palaeontological Association, 55th Annual Meeting, 17th–20th December 2011, Plymouth University, Programme and Abstracts, 15–16. Plymouth University, Plymouth.
  • Bagmet, G.N. 1994. On finds ofCloudina in Mountain Shoria [in Russian]. In: V.M. Podobina and S.A. Rodygin (eds.), Problemy geologii v Sibiri, vol. 1, 60. Tomskij Gosudarstvennyj Universitet, Tomsk.
  • Bengtson, S. and Yue, Z. 1992. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257: 367–369.
  • Brain, C.K. 2001. Some observations on Cloudina, a terminal Proterozoic index fossil from Namibia. Journal of African Earth Sciences 33: 475–480.
  • Brasier, M.D. 1995. The basal Cambrian transition and Cambrian bioevents (from terminal Proterozoic extinctions to Cambrian biomeres). In: O.H. Walliser (ed.), Global Events and Event Stratigraphy in the Phanerozoic, 113–118. Springer, Berlin.
  • Brasier, M.D., Antcliffe, J.B., and Callow, R.H.T. 2011. Evolutionary trends in remarkable fossil preservation across the Ediacaran–Cambrian transition and the impact of metazoan mixing. In: P.A. Allison and D.J. Bottjer (eds.), Taphonomy: Process and Bias Through Time. Topics in Geobiology, vol. 32, 519–567. Springer Science+Business Media B.V., Dordrecht.
  • Brasier, M.D., Corfield, R.M., Derry, L.A., Rozanov, A.Yu., and Zhuravlev, A.Yu. 1994. Multiple 13C excursions spanning Cambrian Explosion to Botomian Crisis in Siberia. Geology 22: 455–458.
  • Brasier, M.D., Green, O., and Shields, G. 1997. Ediacaran sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna. Geology 25: 303–306.
  • Brasier, M.D., McCarron, G., Tucker, R., Leather, J., Allen, P., and Shields, G. 2000. New U−Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28: 175–178.
  • Brasier, M.D., Perejón, A., and San José, M.A. de 1979. Discovery of an important fossiliferous Precambrian–Cambrian sequence in Spain. Estudios geológicos 35: 379–383.
  • Brasier, M.D., Shields, G., Kuleshov, V.N., and Zhegallo, E.A. 1996. Integrated chemo− and biostratigraphic calibration of early animal evolution: Neoproterozoic−early Cambrian of southwest Mongolia. Geological Magazine 133: 445–485.
  • Budd, G.E. and Jensen, S. 2004. The limitations of the fossil record and the dating of the origin of the Bilateria.In: P.C.J. Donoghue and M.P. Smith (eds.), Telling the Evolutionary Time, Molecular Clocks and the Fossil Record, Systematics Association Publication, vol. 66: 166–189. CRC Press (Taylor and Francis), Boca Raton.
  • Burns, S.J., Haudenschild, U., and Matter, A. 1994. The strontium isotopic composition of carbonates from the Late Precambrian (?560–540 Ma) Huqf Group of Oman. Chemical Geology 111: 269–282.
  • Cai, Y.P. and Hua, H. 2007. Pyritization in the Gaojiashan Biota. Chinese Science Bulletin 52: 645–650.
  • Cai, Y.P., Hua, H., Xiao, S., Schiffbauer, J.D., and Li, P. 2010. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits. Palaios 25: 487–506.
  • Checa, A.G., Esteban−Delgado, F.J., and Rodríguez−Navarro, A.B. 2007. Crystallographic structure of the foliated calcite in bivalves. Journal of Structural Biology 157: 393–402.
  • Chen, M., Chen, Y., and Qian, Y. 1981. Some tubular fossils from Sinian–Lower Cambrian boundary sequences, Yangtze Gorge [in Chinese with English abstract]. Bulletin of Tianjiin Instute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 3: 117–124.
  • Chen, Z. and Sun, W.−G. 2001. Late Sinian (tubular) metazoan fossils: Cloudina and Sinotubulites from southern Shaanxi. Acta Micropalaeontologica Sinica 18: 180–202.
  • Chen, Z., Bengtson, S., Zhou, C.−M., Hua, H., and Yue, Z. 2008. Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China. Lethaia 41: 37–45.
  • Compston, W., Zhang, Z., Cooper, J.A., Ma, G., and Jenkins, R.J.F. 2008. Further SHRIMP geochronology on the early Cambrian of South China. American Journal of Science 308: 399–420.
  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U−Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308: 95–98.
  • Conway Morris, S. 1993. Ediacaran−like fossils from the Cambrian Burgess Shale type faunas of North America. Palaeontology 36: 593–635.
  • Conway Morris, S., Mattes, B.W., and Chen, M. 1990. The early skeletal organism Cloudina: New occurrences from Oman and possibly China. American Journal of Science 290−A: 245–260.
  • Corsetti, F.A. and Hagadorn, J.W. 2000. Precambrian–Cambrian transition: Death Valley, United States. Geology 28: 299–302.
  • Corsetti, F.A. and Hagadorn, J.W. 2003. The Precambrian–Cambrian transition in the southern Great Basin, USA. Sedimentary Record 1: 4–8.
  • Cortijo, I., Martí Mus, M., Jensen, S., and Palacios, T. 2010. A new species of Cloudina from the terminal Edicaran of Spain. Precambrian Research 176: 1–10.
  • Cortijo, I., Palacios, T., Jensen, S., and Martí Mus, M. 2006. Nuevos datos sobre los cloudínidos de España. In: E. Fernández−Martínez (ed.), XXII Jornadas de la Sociedad Española de Paleontología y simposios de los proyectos PICG 493, 503, 499 y 467, Libro de Resúmenes, 103–105. Secretariado de Publicaciones, Universidad de León, León.
  • Crimes, T.P., Insole, A., and Williams, B.P. 1995. A rigid bodied Ediacaran biota from Upper Cambrian strata in Co. Wexford, Eire. Geological Journal 30: 89–109.
  • Ding, L.−F., Zhang, L., Li, Y., and Dong, J. 1992. The Study of the Late Sinian–Early Cambrian Biotas from the Northern Margin of Yangtze Platform [in Chinese]. 135 pp. Scientific and Technical Documents Publishing House, Beijing.
  • Domke, K.L., Bottjer, D.J., and Corsetti, F.A. 2009. Who is that mysterious biomineralizer? The diagenetic masking of Cloudina’s paleoecology in the White−Inyo region of California and Nevada, USA. Geological Society of America Abstracts with Programs 41 (7): 31.
  • Dyatlova, I.N. [Dâtlova, I.N.] and Sycheva, R.F. [Syčeva, R.F.] 1999. New data on biostratigraphy of Eastern Sayan [in Russian]. Stratigrafiâ i geologičeskaâ korrelâciâ 7 (4): 3–13.
  • Esakova, N.V. and Zhegallo, E.A. [Žegallo, E.A.] 1996. Lower Cambrian biostratigraphy and fauna of western Mongolia [in Russian]. Sovmestnaâ Rossijsko−Mongol’skaâ Paleontologičeskaâ ekspeditciâ, Trudy 46: 1–214.
  • Fedorov, A.B. and Zhuravlev, A.Yu. 1993. Oldest biomineralized animal Cloudina. In: “Biomineralization 93”, 7th International Symposium on Biomineralization, November 17–20, Monaco, 98. Centre Scientifique de Monaco, Monaco.
  • Feng, W., Chen, Z., and Sun, W. 2003. Diversification of skeletal microstructures of organisms through the interval from the latest Precambrian to the Early Cambrian. Science in China, Series D 46: 977–985.
  • Fernández−Remolar, D.C. 2001. Latest Neoproterozoic to Middle Cambrian body fossil record in Spain (exclusive of trilobites and archaeocyaths) and their stratigraphic significance. Geologiska Föreningens i Stockholm Förhandlingar 123: 73–80.
  • Fernández Remolar, D.C., García−Hidalgo, J.F., and Moreno−Eiris, E. 2005. Interés del registro de los primeros organismos en el Arcaico y Proterozoico. Boletín de la Real Sociedad Española de Historia Natural (Sección Geológica) 100: 177–209.
  • Fike, D.A. and Grotzinger, J.P. 2008. A paired sulfate−pyrite 34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle. Geochimica et Cosmochimica Acta 72: 2636–2648.
  • Gámez Vintaned, J.A. 1996. The río Huso section. In: E. Liñán, J.A. Gámez Vintaned, and R. Gozalo (eds.), II Field Conference of the Cambrian Stage Subdivision Working Groups. International Subcommission on Cambrian Stratigraphy. Spain, 13–21 September 1996. Field Trip Guide and Abstracts, 28–31. Universidad de Zaragoza, Zaragoza.
  • Gaucher, C. and Sprechmann, P. 1999. Upper Vendian skeletal fauna of the Arroyo del Sodado Group, Uruguay. Beringeria 23: 55–91.
  • Gaucher, C., Boggiani, P.C., Sprechmann, P., Sial, A.N., and Fairchild, T. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Sodado and Corumbá groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research 120: 241–278.
  • Germs, G.J.B. 1972. New shelly fossils from the Nama Group, South−West Africa. American Journal of Science 272: 752–761.
  • Glaessner, M.F. 1976. Early Phanerozoic annelid worms and their geological and biological significance. Journal of the Geological Society, London 132: 259–275.
  • Grant, S.W.F. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science 290−A: 261–294.
  • Grant, S.W.F., Knoll, A.H., and Germs, G.J.B. 1991. Probable calcified metaphytes in the latest Proterozoic Nama Group, Namibia: origin, diagenesis, and implications. Journal of Paleontology 65: 1–18.
  • Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30: 203–221.
  • Grazhdankin, D.V., Balthasar, U., Nagovitsin, K.E., and Kochnev, B.B. 2008. Carbonate−hosted Avalon−type fossils in arctic Siberia. Geology 36: 803–806.
  • Grotzinger, J., Adams, E.W., and Schröder, S. 2005. Microbial−metazoan reefs of the terminal Proterozoic Nama Group (c. 550–543 Ma), Namibia. Geological Magazine 142: 499–517.
  • Grotzinger, J.P., Bowring, S.A., Saylor, B.Z., and Kaufman, A.J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270: 598–604.
  • Grotzinger, J.P., Watters, W.A., and Knoll, A.H. 2000. Calcified metazoans in thrombolite−stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26: 334–359.
  • Hagadorn, J.W. and Waggoner, B. 2000. Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology 74: 349–359.
  • Hagadorn, J.W., Fedo, C.M., and Waggoner, B.M. 2000. Early Cambrian Ediacaran−type fossils from California. Journal of Paleontology 74: 731–740.
  • Hedley, R.H. 1958. Tube formation by Pomatoceros triqueter (Polychaeta). Journal of the Marine Biological Association of the United Kingdom 37: 315–322.
  • Hof, C.H.J. and Briggs, D.E.G. 1997. Decay and mineralization of mantis shrimps (Stomatopoda: Crustacea)—A key to their fossil record. Palaios 12: 420–438.
  • Hofmann, H.J. and Mountjoy, E.W. 2001. Namacalathus–Cloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils. Geology 29: 1091–1094.
  • Hsu, K.J., Oberhänsli, K., Gao, J.Y., Sun, S., Chen, H., and Krähenbühl, U. 1985. “Strangelove ocean” before the Cambrian explosion. Nature 316: 809–811.
  • Hua, H., Chen, Z., and Yuan, X. 2007. The advent of mineralized skeletons in Neoproterozoic Metazoa—new fossil evidence from the Gaojiashan Fauna. Geological Journal 42: 263–279.
  • Hua, H., Chen, Z., and Zhang, L.−Y. 2005a. Terminal Neoproterozoic tubular microproblematica from the Dengying Formation, southern China. Acta Palaeontologica Sinica 44: 487–493.
  • Hua, H., Chen, Z., Yuan, X., Zhang, L., and Xiao, S. 2005b. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina. Geology 33: 277–280.
  • Hua, H., Pratt, B.R., and Zhang, L.−Y. 2003a. Borings in Cloudina shells: Complex predatory−prey dynamics in the terminal Neoproterozoic. Palaios 18: 454–459.
  • Hua, H., Zhang, L.−Y., and Chen, Z. 2003b. Microbially mediated phosphatization in the Late Sinian skeletal fossils, southern Shaanxi. Acta Palaeontologica Sinica 42: 189–199.
  • Hua, H., Zhang, L.−Y., Zhang, Z.−F., and Wang, J.−P. 2000a. New fossil evidences from latest Neoproterozoic Gaojiashan biota, South China [in Chinese with English abstract]. Acta Palaeontologica Sinica 39: 381–390.
  • Hua, H., Zhang, L.−Y., Zhang, Z.−F., and Wang, J.−P. 2000b. Fossil evidences of latest Neoproterozoic Gaojiashan biota and their characteristics [in Chinese with English abstract]. Acta Palaeontologica Sinica 39: 507–515.
  • Ioganson, A.K. and Kropachev, A.P. [Kropačev, A.P.] 1979. Peculiarities in structure of Vendian strata in Eastern Yakutia [in Russian]. Geologiâ i geofizika 1979 (10): 28–38.
  • Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., and Yochida, N. 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: Prominent global−scale isotope excursions just before the Cambrian Explosion. Gondwana Reserch 14: 193–208.
  • Ivantsov, A.Yu. and Naimark, E.B. 2007. Ontogenetic variability of the Late Vendian problematic Parvancorina Glaessner, 1958. In: M.A. Semikhatov (ed.), The Rise and Fall of the Vendian (Ediacaran) Biota, Origin of the Modern Biosphere, Transactions of the International Conference on the IGCP Project 493, Moscow, 20–31 August 2007, 13–17. GEOS, Moscow.
  • James, N.P. and Klappa, C.F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology 53: 1051–1096.
  • Jensen, S. and Runnegar, B. 2005. A complex trace fossil from the Spitskop Member (terminal Ediacaran–?Lower Cambrian) of southern Namibia. Geological Magazine 142: 561–569.
  • Jensen, S., Gehling, J.G., and Droser, M.L. 1998. Ediacara−type fossils in Cambrian sediments. Nature 393: 567–569.
  • Jensen, S., Palacios, T., and Martí Mus, M. 2007. A brief review of the fossil record of the Ediacaran–Cambrian transition in the area of Montes de Toledo—Guadalupe, Spain. Geological Society Special Publications, London 286: 223–235.
  • Jensen, S., Saylor, B.Z., Gehling, J.G., and Germs, G.J.B. 2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28: 143–146.
  • Karlova, G.A. 1987. The first finds of skeletal fauna in the Turkut Formation of the Olenëk Uplift [in Russian]. Doklady Akademii Nauk SSSR 292 (1): 204–205.
  • Kheraskova, T.N. [Heraskova, T.N.] and Samygin, S.G. 1992. Tectonic conditions of the formation of Vendian–Middle Cambrian siliciclastic−carbonate complex in Eastern Sayan [in Russian]. Geotektonika 1992 (6): 18–36.
  • Khomentovsky, V.V. [Homentovskij, V.V.] 1985. The Vendian of the Siberian Platform. In: B.S. Sokolov and M.A. Fedonkin (eds.), Vendskaâ sistema. Istoriko−geologičeskoe i paleontologičeskoe obosnovanie, tom 2: Stratigrafiâ i geologičeskie processy, 83–161. Nauka, Moskva. English translation: The Vendian System, vol. 2: Regional Geology. Springer, Berlin, 1990).
  • Khomentovsky, V.V. and Gibsher, A.S. 1996. The Neoproterozoic–Lower Cambrian in northern Govi−Altay, western Mongolia: Regional setting, lithostratigraphy and biostratigraphy. Geological Magazine 133: 371–390.
  • Khomentovsky, V.V. and Karlova, G.A. 1993. Biostratigraphy of the Vendian–Cambrian beds and the lower Cambrian boundary in Siberia. Geological Magazine 130: 29–45.
  • Khomentovsky, V.V. [Homentovskij, V.V.] and Karlova, G.A. 1994. Yudomian (Vendian) in the stratotype area [in Russian]. Geologiâ i geofizika 35 (2): 3–13.
  • Khomentovsky, V.V. and Karlova, G.A. 2002. The boundary between Nemakit–Daldynian and Tommotian stages (Vendian– Cambrian systems) of Siberia. Stratigraphy and Geological Correlation 10 (3): 13–34.
  • Khomentovsky, V.V. and Karlova, G.A. 2005. The Tommotian Stage base as the Cambrian lower boundary in Siberia. Stratigraphy and Geological Correlation 13 (1): 26–40.
  • Khomentovsky, V.V. [Homentovskij, V.V.], Shenfil’, V.Yu. [Šenfil’, V.Û.], Yakshin, M.S. [Âkšin, M.S.], and Butakov, S.P. 1972. The reference sections of the Upper Precambrian and Lower Cambrian strata on the Siberian Platform [in Russian]. Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiâ Nauk SSSR, Trudy 141: 1–356.
  • Kimura, H. and Watanabe, Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology 29: 995–998.
  • Knoll, A.H. 2003. Biomineralization and evolutionary history. In: P.M. Dove, J.J. De Yoreo, and S. Weiner (eds.), Biomineralization, 329–356. Mineralogical Society of America, Washington, D.C.
  • Knoll, A.H., Grotzinger, J.P., Kaufman, A.J., and Kolosov, P.N. 1995. Integrated approaches to terminal Proterozoic stratigraphy: An example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73: 251–270.
  • Kobayashi, I. and Samata, T. 2006. Bivalve shell structure and organic matrix. Materials Science and Engineering C 26: 692–698.
  • Kontorovich, A.E., Varlamov, A.I., Grazhdankin, D.V., Karlova, G.A., Klets, A.G., Kontorovich, V.A., Saraev, S.V., Terleev, A.A., Belyaev, S.Yu., Varaksina, I.V., Efimov, A.S., Kochnev, B.B., Nagovitsin, K.E., Postnikov, A.A., and Filippov, Yu.F. 2008. A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3). Russian Geology and Geophysics 49: 932–939.
  • Kouchinsky, A. and Bengtson, S. 2002. The tube wall of Cambrian anabaritids. Acta Palaeontologica Polonica 47: 431–444.
  • Kouchinsky, A., Bengtson, S., Pavlov, V., Runnegar, B., Val’kov, A., and Young, E. 2005. Pre−Tommotian age of the lower Pestrotsvet Formation in the Selinde section on the Siberian Platform: Carbon isotope evidence. Geological Magazine 142: 319–325.
  • Lafuste, J. 1970. Lames ultra−minces à faces polies. Procédé et application à la microstructure des Madréporaires fossiles. Cómptes Rendus de l’Académie des Sciences de Paris (Série D) 270 (1970): 679–681.
  • Li, G., Steiner, M., and Hua, H. 2005. Stratigraphy and fossil record of the Neoproterozoic–Cambrian transition on the northern margin of the South China Plate (Ningqiang, Shaanxi).In: S. Peng, L.E. Babcock, and M. Zhu (eds.), Cambrian System of China and Korea. Guide to Field Excursion, 179–193. University of Science and Technology of China Press, Hefei.
  • Lin, J.−P., Gon, S.M., III, Gehling, J.G., Babcock, L.E., Zhao, Y.−L., Zhang, X.−L., Hu, S.−X., Yuan, J.−L., Yu, M.−Y., and Peng, J. 2006. A Parvancorina−like arthropod from the Cambrian of South China. Historical Biology 18: 33–45.
  • Liñán, E., Gozalo, R., Palacios, T., Gámez Vintaned, J.A., Ugidos, J.M., and Mayoral, E. 2002. Cambrian. In: W. Gibbons and T. Moreno (eds.), The Geology of Spain, 17–29. The Geological Society, London.
  • Liñán, E., Palacios, T., and Perejón, A. 1984. Precambrian–Cambrian boundary and correlation from southwestern and central part of Spain. Geological Magazine 121: 221–228.
  • McCall, G.J.H. 2006. The Vendian (Ediacaran) in the geological record: Enigmas in geology’s prelude to the Cambrian explosion. Earth−Science Reviews 77: 1–229.
  • McMenamin, M.A.S. 1985. Basal Cambrian small shelly fossils from the La Ciénega Formation, northwestern Sonora, Mexico. Journal of Paleontology 59: 1414–1425.
  • Marfenin, N.N. 1993. Fenomen kolonial’nosti. 237 pp. Izdatel’stvo Moskovskogo Gosudarstvennogo Universiteta, Moskva.
  • Miklukho−Maklay, A.D. [Mikluho−Maklaj, A.D.] 1959. On the stratigraphic significance, systematics, and phylogeny of Staffella−like foraminiferans [in Russian]. Doklady Akademii Nauk SSSR 125 (3): 628–631.
  • Narbonne, G.M. 2004. Modular construction of Early Ediacaran complex life forms. Science 305: 1142–1144.
  • Narbonne, G.M., Kaufman, A.J., and Knoll, A.H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America, Bulletin 106: 1281–1292.
  • Narbonne, G.M., Saylor, B.Z., and Grotzinger, J.P. 1997. The youngest Ediacaran fossils from southern Africa. Journal of Paleontology 71: 953–967.
  • Neff, J.M. 1971. Ultrastructure studies of the secretion of calcium carbonate by the serpulid polychaete worm, Pomatoceros caerules. Zeitschrift für Zellforschung und Mikroskopische Anatomie 120: 160–186.
  • Nevolin, B.S., Potapov, S.V., and Stavtsev, A.L. [Stavcev, A.L.] 1978. The Upper Proterozoic (Riphean) and Lower Cambrian on the southeastern margin of the Siberian Platform, Yudoma−Maya Depression and Okhotsk Middle Massif. In: V.V. Khomentovsky [V.V. Homentovskij] (ed.), Novye dannye po stratigrafii i paleontologii pozdnego dokembriâ vostočnyh i severnyh rajonov Sibiri, 21–63. Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiâ Nauk SSSR, Novosbirsk.
  • Ortega Girones, E. and Sánchez Vizcaíno, J. 1987. Mapa Geológico de España. E. 1:50.000. Abenójar (783). 42 pp. Instituto Geológico y Minero de España, Madrid.
  • Palacios Medrano, T. 1989. Microfósiles de pared orgánica del Proterozoico Superior (región central de la Península Ibérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza 3: 1–91.
  • Palacios, T., Gámez Vintaned, J.A., Fernández−Remolar, D., and Liñán, E. 1999. The lowermost Cambrian in the Valdelacasa Anticline (central Spain): Some new palaeontological data. Journal of Conference Abstracts 4 (3): 1017.
  • Pelechaty, S.M. 1998. Integrated chronostratigraphy of the Vendian System of Siberia: Implications for a global stratigraphy. Journal of the Geological Society, London 155: 957–973.
  • Pernet, B. 2001. Escape hatches for the clonal offspring of serpulid polychaetes. Biological Bulletin 200: 107–117.
  • Podkovyrov, V.N. and Davydov, Yu.V. [Davydov, Û.V.] 1998. The Yudomian of the Uchur−Maya hypostratotype: types of basins and chemostratigraphy of carbonates. In: V.A. Koroteev (ed.), Paleogeografiâ venda−rannego paleozoâ Severnoj Evrazii, 130–136. Institut Geologii i Geofiziki, Ural’skoe Otdelenie, Rossijskaâ Akademia Nauk, Ekaterinburg.
  • Porter, S.M. 2010. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons. Geobiology 8: 256–277.
  • Rodríguez Alonso, M.D, Alonso Gavilán, G., Liñán, E., Gámez−Vintaned, J.A., and Pérez García, P.P. 1995. Transversal Salamanca−Tamames−Peña de Francia−Monsagro−S Ciudad Rodrigo (Spain). Neoproterozoic–Cambrian Transition (Aldeatejada Fm, Tamames Sandstone Fm and the Schist Greywacke Complex in Monsagro−S of Ciudad Rodrigo). In: M.D. Rodríguez Alonso and G. Alonso Gavilán (eds.), XIII Geological Meeting on the West of the Iberian Peninsula, Characterization and evolution of the Neoproterozoic–Cambrian Basin on the Iberian Peninsula. Annual IGCP Project−319 Meeting: Global Paleogeography in the Upper Precambrian–Lower Cambrian. Regional IGCP Project−320 Meeting: Neoproterozoic Events and Resources. Post−Conference Field Guide. Neoproterozoic–Lower Cambrian in the Central−Western part of the Iberian Peninsula. Spain−Portugal. September, 27−30th. 1995, 13–52. Signo, S.L., Salamanca.
  • Rozanov, A.Yu. [Rozanov, A.Û.], Missarzhevsky, V.V. [Missarževskij, V.V.], Volkova, N.A., Voronova, L.G., Krylov, I.N., Keller, B.M., Korolyuk, I.K. [Korolûk, I.K.], Lendzion, K., Michniak, R., Pykhova, N.G., and Sidorov, A.D. 1969. The Tommotian Stage and the Cambrian lower boundary problem [in Russian]. Geologičeskij Institut, Akademiâ Nauk SSSR, Trudy 206: 1–380.
  • Santamaría Casanovas, J. and Remacha Grau, E. 1994. Variaciones laterales del “Nivel de Fuentes”, Precámbrico–Cámbrico de la Zona CentroIbérica. Geogaceta 15: 14–16.
  • Saylor, B.Z., Kaufman, A.J., Grotzinger J.P., and Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 68: 1223–1235.
  • Schröder, S. and Grotzinger, J.P. 2007. Evidence for anoxia at the Ediacaran–Cambrian boundary: the record of redox−sensitive trace elements and rare earth elements in Oman. Journal of the Geological Society, London 164: 175–187.
  • Seilacher, A. and Pflüger, F. 1994. From biomats to benthic agriculture: A biohistoric revolution. In: W.E. Krumbein, D.M. Paterson, and L.J. Stal (eds.), Biostabilization of Sediments, 97–105. BIS, Oldenburg.
  • Semikhatov, M.A. [Semihatov, M.A.], Komar, V.A., and Serebryakov, S.N. [Serebrâkov, S.N.] 1970. The Yudoma Complex in the stratotype area [in Russian]. Geologičeskij Institut, Akademiâ Nauk SSSR, Trudy 210: 1–207.
  • Semikhatov, M.A. [Semihatov, M.A.], Kuznetsov, A.B. [Kuznecov, A.B.], Podkovyrov, V.N., Bartley, J., and Davydov, Yu.V. [Davydov, Û.V.] 2004. The Yudoma complex of the stratotype area: C−isotope chemostratigraphic correlations and a correlation with the Vendian [in Russian]. Stratigrafiâ i geologičeskaâ korrelâciâ 12 (5): 3–28.
  • Semikhatov, M.A. [Semihatov, M.A.], Ovchinnikova, G.V. [Ovčinnikova, G.V.], Gorokhov, I.M. [Gorohov, I.M.], Kuznetsov, A.B. [Kuznecov, A.B.], Kaurova, O.K., and Petrov, P.Yu. [Petrov, P.Û.] 2003. Pb−Pb isochronous age and Sr−isotope characteristics of the upper Yudoma carbonate strata (Vendian of the Yudoma−Maya Depression, Eastern Siberia) [in Russian]. Doklady Rossijskoj Akademii Nauk 393 (1): 83–87.
  • Shenfil’, V.Yu. [Šenfil’, V.Û.] 1991. The Late Precambrian of the Siberian Platform [in Russian]. Institut Geologii i Geofiziki, Sibirskoe Otdelenie, Akademiâ Nauk SSSR, Trudy 790: 1–185.
  • Shields, G. 1999. Working towards a new stratigraphic calibration scheme for the Neoproterozoic–Cambrian. Eclogae Geologica Helvética 92: 221–233.
  • Shishkin, B.B. [Šiškin, B.B.] and Stepanova, M.N. 1978. The Aim Formation and its palaeontological characteristics [in Russian]. Sibirskij NaučnoIssledovatel’skij Institut Geologii, Geofiziki i Mineral’nogo Syr’â, Trudy 260: 27–36.
  • Shu, D.−G., Conway Morris, S., Han, J., Li, Y., Zhang, X.−L., Hua, H., Zhang, Z.−F., Liu, J.−N., Guo, J.−F., Yao, Y., and Yasui, K. 2006. Lower Cambrian vendobionts from China and early diploblast evolution. Science 312: 731–734.
  • Signor, P.W., III, McMenamin, M.A.S., Gevirtzman, D.A., and Mount, J.F. 1983. Two new pre−trilobite faunas from western North America. Nature 303: 415–418.
  • Signor, P.W., Mount, J.F., and Onken, B.R. 1987. A pre−trilobite small shelly fauna from the White−Inyo region of eastern California and western Nevada. Journal of Paleontology 61: 425–438.
  • Smith, A.G. 2001. Paleomagnetically and tectonically based global maps for Vendian to mid−Ordovician time. In: A.Yu. Zhuravlev and R. Riding (eds.), The Ecology of the Cambrian Radiation, 11–46. Columbia University Press, New York.
  • Sokolov, B.S. 1985. The Vendian System. Historical−geological and palaeontological grounds. In: B.S. Sokolov and M.A. Fedonkin (eds.), Vendskaâ sistema. Istoriko−geologičeskoe i paleontologičeskoe obosnovanie, tom 2: Stratigrafiâ i geologičeskie processy, 199–214. Nauka, Moskva. English translation: The Vendian System, vol. 2: Regional Geology. Springer, Berlin, 1990.
  • Sour−Tovar, F., Hagadorn, J.W., and Huitrón−Rubio, T. 2007. Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50: 169–175.
  • Steiner, M., Li, G., Qian, Y., Zhu, M., and Erdtmann, B.−D. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology 254: 67–99.
  • Strauss, H., Grant, S.W.F., Palacios, T., and Vidal, G. 1995. Carbon and sulfur isotopes in Neoproterozoic and Early Paleozoic sedimentary rocks from Central and Northern Spain. In: M.D. Rodríguez Alonso and G. Alonso Gavilán (eds.), XIII Geological Meeting on the West of the Iberian Peninsula, Characterization and evolution of the Neoproterozoic–Cambrian Basin on the Iberian Peninsula. Annual IGCP Project−319 Meeting: Global Paleogeography in the Upper Precambrian–Lower Cambrian. Regional IGCP Project−320 Meeting: Neoproterozoic Events and Resources. Post−Conference Field Guide. Neoproterozoic–Lower Cambrian in the Central−Western part of the Iberian Peninsula. Spain−Portugal. September, 27–30th. 1995, 163–164. Signo, S.L., Salamanca.
  • Taylor, M.E. 1966. Precambrian mollusc−like fossils from Inyo County, California. Science 153: 198–201.
  • Taylor, P.D. and Vinn, O. 2006. Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications. Journal of the Geological Society, London 163: 225–228.
  • Taylor, P.D. and Weedon, M.J. 2000. Skeletal ultrastructure and phylogeny of cyclostome bryozoans. Zoological Journal of the Linnean Society 128: 337–399.
  • Val’kov, A.K. and Sysoev, V.V. 1970. Cambrian angustiochreids of Siberia [in Russian]. In: A.K. Bobrov (ed.), Stratigrafiâ i paleontologiâ proterozoâ i kembriâ vostoka Sibirskoj platformy, 94–100. Âkutskoe Knižnoe Izdatel’stvo, Âkutsk.
  • Valladares, M.I., Ugidos, J.M., Barba, P., Fallik, A.E., and Ellam, R.M. 2006. Oxygen, carbon and strontium isotope record of Ediacaran carbonates in Central Iberia (Spain). Precambrian Research 147: 354–365.
  • Vidal, G., Palacios, T., Gámez−Vintaned, J.A., Díez Balda, M.A., and Grant, S.W.F. 1994. Neoproterozoic–early Cambrian geology and palaeontology of Iberia. Geological Magazine 131: 729–765.
  • Vidal, G., Palacios, T., Moczydłowska, M., and Gubanov, A.P. 1999. Age constraints from small shelly fossils on the early Cambrian terminal Cadomian Phase in Iberia. Geologiska Föreningens i Stockholm Förhandlingar 121: 137–143.
  • Vinn, O. 2005. The tube ultrastructure of serpulids (Annelida, Polychaeta) Pentaditrupa subtorquata, Cretaceous, and Nogrobs cf. vertebralis, Jurassic, from Germany. Proceedings of the Estonian Academy of Sciences, Geology 54: 260–265.
  • Vinn, O., ten Hove, H.A., and Mutvei, H. 2008. On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology 51: 295–301.
  • Vologdin, A.G. and Maslov, A.B. 1960. On a new group of fossil organisms from the lower Yudoma Formation of the Siberian Platform [in Russian]. Doklady Akademii Nauk SSSR 134: 691–693.
  • Voronova, L.G. and Missarzhevsky, V.V. [Missarževskij, V.V.] 1969. Finds of algae and worm tubes in the Cambrian and Precambrian boundary strata on the north of the Siberian Platform [in Russian]. Doklady Akademii Nauk SSSR 184: 204–210.
  • Weber, B., Steiner, M., and Zhu, M.−Y. 2007. Precambrian–Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology 254: 328–349.
  • Wood, R.A., Grotzinger, J.P., and Dickson, J.A.D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296: 2383–2386.
  • Wood, R.A., Grotzinger, J., and Dickson, J.A.D. 2005. Neoproterozoic microbial−metazoan reefs, Nama Basin, Namibia. Geological Society of America Abstracts with Programs 37 (7): 484.
  • Xiao, S., Shen, B., Zhou, C., Xie, G., and Yuan, X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America 102: 10227–10232.
  • Yang, J., Sun, W., Wang, Z., Xue, Y., and Tao, X. 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: Evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research 93: 215–233.
  • Yochelson, E.L. and Herrera, H.E. 1974. Un fósil enigmático del Cámbrico inferior de Argentina. Ameghiniana 11: 283–294.
  • Yochelson, E.L. and Stump, E. 1977. Discovery of early Cambrian fossils at Taylor Nunatak, Antarctica. Journal of Paleontology 51: 872–875.
  • Zaine, M.F. and Fairchild, T.R. 1987. Novas consideracoes sobre os fosseis da Formacaõ Tamengo, Grupo Corumba, SW do Brazil. In: Anais X Congresso Brasileiro de Paleontologia, Rio de Janeiro 1987, 797–807. Sociedade Brasileira de Paleontologia, Rio de Janeiro.
  • Zhang, L. and Li, Y. 1991. The Late Sinian vasiform microfossils of Ningqiang, Shaanxi Province. Bulletin of Xi'an Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences 31: 77–86.
  • Zhang, L.−Y. 1994. A new progress in research on vase−shaped microfossils from the Dengying Formation of Sinian in southern Shaanxi Province [in Chinese with English abstract]. Acta Geologica Gansu 3: 1–8.
  • Zhang, L.−Y. and Hua, H. 2000. Late Sinian tubular shell fossils and their significance [in Chinese with English abstract]. Acta Palaeontologica Sinica 39: 326–333.
  • Zhu, M., Zhang, J., and Yang, A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 254: 7–67.
  • Zhu, R., Li, X., Hou, X., Pan, Y., Wang, F., Deng, C., and He, H. 2009. SIMS U−Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: Constraint on the age of the Precambrian–Cambrian boundary. Science in China, Series D 52: 1385–1392.
  • Zhuravlev, A.Yu. 1993. Were Ediacaran Vendobionta multicellulars? Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 190: 299–314.
  • Zhuravlev, A.Yu. [Žuravlev, A.Û.] 2001. On some archaeocyath collections housed at the Paleontological Institute of the Russian Academy of Sciences [in Russian]. Paleontologičeskij žurnal 2001 (6): 91–94.
  • Zhuravlev, A.Yu. and Naimark, E.B. 2005. Alpha, beta, or gamma: Numerical view on the Early Cambrian world. Palaeogeography, Palaeoclimatology, Palaeoecology 220: 207–225.
  • Zhuravlev, A.Yu. and Riding, R. (eds.) 2001. The Ecology of the Cambrian Radiation. 526 pp. + i–x. Columbia University Press, New York.
  • Zhuravlev, A.Yu. and Wood, R.A. 1996. Anoxia as the cause of the mid–Early Cambrian (Botomian) extinction event. Geology 24: 311–314.
  • Zhuravlev, A.Yu. and Wood, R.A. 2008. Eve of biomineralization: Controls on skeletal mineralogy. Geology 36: 923–926.
  • Zhuravlev, A.Yu., Gámez Vintaned, J.A., and Ivantsov, A.Yu. 2009. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geological Magazine 146: 775–780.
  • Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., Ivantsov, A.Yu., Fedorov, A.B., and Diez Álvarez, M.E. 2006. New finds of the oldest skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain. In: 21ème Réunion des Sciences de la Terre, Dijon, 04−08 Décembre 2006, Joint Earth Sciences Meeting, 43. Société géologique de France, Paris.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f5e600cf-fb14-4956-8248-0813a8489290
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.