PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 33 | 1 |

Tytuł artykułu

Climate-related variability and stock - recruitment relationship of the North Pacific Albacore tuna

Warianty tytułu

PL
Wpływ klimatu a zależność stado – uzupełnienie na przykładzie tuńczyka północnopacyficznego Thunnus alalunga

Języki publikacji

EN

Abstrakty

EN
The stock-recruitment relationship is biological in nature and it is evident that one affects the other. However, fish life cycle, growth, abundance and distribution is dependent on a complex relation with various biotic and abiotic variables inclusive of environmental factors. The stock-recruitment relationship and environmental influences was investigated for the North Pacific albacore tuna (Thunnus alalunga). Statistical investigation revealed the presence of different density-dependent effects in the relationships of recruits per spawning biomass (RPS) and recruitment (R) against the female spawning stock biomass (SSB). Significant relationship of R, RPS and SSB were determined with the sea surface temperature (SST), Pacific Decadal Oscillation (PDO) and multivariate El Niño Southern Oscillation (ENSO), with SST being the principal variable. This makes the stock recruitment behavior multidimensional. The results suggest significant influence of the environmental conditions on the stock recruitment relationship of the North Pacific albacore tuna including a possible regime shift
PL
Modele stado – uzupełnienie wyjaśniają jedynie pewną część obserwowanej wariancji rekrutacji. Cykl życiowy, tempo wzrostu, liczebność i rozmieszczenie ryb wiążą się z różnymi zmiennymi biotycznymi i abiotycznymi, w tym z czynnikami klimatycznymi. W pracy zbadano proces naturalnej rekrutacji w zależności od zmieniających się parametrów środowiska. Wyniki wskazują na istotny wpływ warunków klimatycznych na zależność stado – uzupełnienie

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

1

Opis fizyczny

p.131-154,fig.,ref.

Twórcy

autor
  • Deparment of Science, School of Science and Technology, The University of Fiji, Fiji
  • Department of Fisheries, College of Agriculture, Fisheries and Forestry, Fiji National University, Fiji
  • Department of Ocean Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
  • Department of Ocean Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
autor
  • Department of Ocean Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
autor
  • Department of Fisheries, College of Agriculture, Fisheries and Forestry, Fiji National University, Fiji

Bibliografia

  • AOKI S. 2012. Parameterestimation of a regression line by the deming regression method, http://aoki2.si.gunma-u.ac.jp/R/Deming.html, access: 5.11.2016.
  • BELL J.D., REID C., BATTY M.J., LEHODEY P., RODWELL L., HOBDAY A.J., JOHNSON J.E., DEMMKEA. 2013. Effects of climate change on oceanic fisheries in the tropical Pacific. Implications for economic development and food security. Climate Change, 119: 199–212.
  • CAHUIN S.M., CUBILLOS L.A., ÑIQUEN M., ESCRIBANO R. 2009. Climatic regimes and the recru-itment rate of Anchoveta, Engraulis ringens, off Peru. Estuar. Coast. Shelf. S., 84: 591–597.
  • CHHAK K.C., DI LORENZO E., SCHNEIDER N., CUMMINS P.F. 2009. Forcing of low-frequency ocean variability in the Northeast Pacific. J. Climate, 22: 1255–1276.
  • CHEN K.S., CRONE P.R., HSU C.C. 2010. Reproductive biology of albacore Thunnus alalunga. J. Fish Biol., 77: 119–136.
  • CHILDERS J., SNYDER S., KOHIN S. 2011. Migration and behaviour of juvenile North Pacific alba-core (Thunnus alalunga). Fish. Oceanogr., 20: 157–173.
  • CHOW S., USHIAMA H. 1995. Global population structure of albacore (Thunnus alalunga) inferred by RFLP analysis of the mitochondrial ATPase gene. Mar. Biol., 123: 39–45
  • DESER C., PHILLIPS A.S., HURRELL J.W. 2004. Pacific interdecadal climate variability. Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17: 3109–3124.
  • FARLEY J.H., HOYLE S.D., EVESON J.P., WILLIAMS A.J., DAVIES C.R., NICOL S.J. 2014. Maturity ogives for South Pacific albacore tuna (Thunnus alalunga) that account for spatial and seaso-nal variation in the distributions of mature and immature fish. PLoS ONE, 9: e83017.
  • GANACHAUD A., GUPTA A.S., BROWN J.N., EVANS K., MAES C., MUIR L.C., GRAHAM F.S. 2013. Projected changes in the Tropical Pacific Ocean of importance to tuna fisheries. Clim. Change, 119: 163–179.
  • GANACHAUD A., GUPTA A.S., ORR J.C., WIJFFELS S.E., RIDGWAY K.R., HEMER M.A., MAES C., STEINBERG C.R., TRIBOLLET A.D., QIU B., KRUGER, J.C. 2011. Observed and expected changes in the Tropical Pacific Ocean. In: Vulnerability of tropical Pacific fisheries and aquaculture to climate change. Eds. J.D. Bell, J.E. Johnson, A.J. Hobday. Secretariat of the Pacific Community, Noumea, pp. 101–187.
  • GILLETT R. 2009. Fisheries in the economies of Pacific Island countries and territories. Pacific studies series, Asian Development Bank, World Bank, Forum Fisheries Agency, Secretariat of the Pacific Community, and Australian Agency for International Development.
  • HILBORN R., WALTERS C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainity. Chapman and Hall, New York.
  • ICHINOKAWA M., COAN JR. A.L., TAKEUCHI Y. 2008. Transoceanic migration rates of young North Pacific albacore, Thunnus alalunga, from conventional tagging data. Can. J. Fish. Aquat. Sci., 65: 1681–1691.
  • INTERNATIONAL SCIENTIFIC COMMITTEE (ISC). 2011. Stock assessment of albacore tuna in the North Pacific Ocean in 2011. In: Report of the Albacore Working Group Stock Assessment Workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. Shizuoka, Japan, 4–11 June, 2011.
  • INTERNATIONAL SCIENTIFIC COMMITTEE (ISC). 2014. Stock assessment of albacore tuna in the North Pacific Ocean in 2014. In: Report of the Albacore Working Group. International Scien-tific Committee for Tuna and Tuna-like Species in the North Pacific Ocean. Taipei, Taiwan, 16–21 July 2014.
  • JONES P.D., OSBORN T.J., BRI FFS K.R., FOLLAND C.K., HORTON E.B., ALEXANDER L.V., PARKER D.E., RAYNER N.A. 2001. Adjusting for sampling density in grid-box land and ocean surface temperature time series. J. Geophys. Res., 106: 3371–3380.
  • KAPLAN A.Y., KUSHNIR Y., CANE M., BLUMENTHAL M. 1997. Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. J. Geophys. Res., 102: 27835-27860.
  • LAURS R.M., POWERS, J.E. 2010. North Pacific albacore ‘white paper’ possible management options for the U.S. West Coast albacore fishery. U.S. Department of Commerce, NOAA National Marine Fisheries Service, Long Beach, California.
  • LE BORGNE R., ALLAIN V., GRIFFITHS S.P., MATEAR R.J., MCKINNON A.D., RICHARDSON A.J., YOUNG J.W. 2011. Vulnerability of open ocean food webs in the Tropical Pacific to climate change. In: Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. Eds. J.D. Bell, J.E. Johnson, , A.J. Hobday. Secretariat of the Pacific Community, Noumea, 189–249.
  • LEHODEY P., CHAI F., HAMPTON J. 2003. Modelling climate-related variability of tuna populations from a coupled ocean-biogeochemical-populations dynamics model. Fish. Oceanogr., 12: 483–494.
  • LEHODEY P., HAMPTON J., BRILL R.W., NICOL S., SENINA I., CALMETTES B., PORTNER H.O., BOPP L., ILYINA T., BELL J.D., SIBERT, J. 2011. Vulnerability of oceanic fisheries in the tropical Pacific to climate change. In: Vulnerability of Tropical Pacific Fisheries and Aquaculture to Climate Change. Eds. J.D. Bell, J.E. Johnson, , A.J. Hobday. Secretariat of the Pacific Community. Noumea, pp. 435–484.
  • LEHODEY P., SENINA I., NICOL S., HAMPTON J. 2015. Modelling the impact of climate change on South Pacific albacore tuna. Deep-Sea Res. Pt., II. 113: 246–259
  • LINSLEY B.K., WU H.C., DASSIÉ E.P., SCHRAG D.P. 2015. Decadal changes in South Pacific sea surface temperature and the relationship to the pacific decadal oscillation and upper ocean heat content. Geophys. Res. Lett., 42: 2358–2366.
  • LITZOW M.A., HOBDAY A.J., FRUSHER S.D., DANN P., TUCK G.N. 2016. Detecting regime shifts in marine systems with limited biological data: An example from Southeast Australia. Prog. Oce-anogr., 141: 96–108.
  • MANTUA N.J., HARE S.R., ZHANG Y., WALLACE J.M., FRANCIS R.C. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. B. Am. Meteorol. Soc., 78: 1069–1079.
  • MARTIN R.F. 2000. General deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clin. Chem., 46: 100–104.
  • MIYAKE M.P., MIYABE N., NAKONO, H. 2004. Historical trends of tuna catched in the world. Food and Agricultural Organization. Fisheries Technical Paper, 467: 1–74.
  • MÖLLMAN C., FOLKE C., EDWARDS M., CONVERSI A. 2014. Marine regime shifts around the globe. Theory, drivers and impacts. Philos. T. Roy. Soc. B., 370: 20130260.
  • OTSU T., UCHIDA, R.N. 1959. Sexual maturity and spawning of albacore in the Pacific Ocean. Fish. B-NOAA., 50: 287–305.
  • PHILLIPS A.J., CIANNELLLI L., BRODEUR R.D., PEARCY W.G., CHILDERS J. 2014. Spatio-temporal associations of albacore CPUEs in the Northeastern Pacific with regional SST and climate environmental variables. ICES J. Mar. Sci., 71: 1717–1727.
  • QUINN T.J., DERISO R.B. 1999. Quantitative Fish Dynamics. Oxford University Press. New York.r Core teaM. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/.raMon d., Bailey k. 1996. Spawning seasonality of albacore, Thunnus alalunga, in the South Pacific Ocean. Fish. B-NOAA., 94: 725–733.
  • RAYNER N.A., PARKER D.E., HORTON E.B., FOLLAND C.K., ALEXANDER L.V., ROWELL D.P., KENT E.C., KAPLAN A. 2003. Global analysis of sea surface temperature, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108: D14, 4407.
  • RICKER W.E. 1954. Stock and recruitment. J. Fish. Res. Board Can., 11: 559–623.
  • SAKURAMOTO K. 2012. A new concept of the stock-recruitment relationship for the Japanese sardi-ne. Sardinops melanostictus. Open Fish Sci. J., 5: 60–69.
  • SAKURAMOTO K., SUZUKI N. 2012. Effects of process and/or observation errors on the stock-recruitment curve and the validity of the proportional model as a stock-recruitment relationship. Fisheries Sci., 78: 41–54.
  • SINGH A.A., SAKURAMOTO K., SUZUKI N. 2014. Model for stock-recruitment dynamics of the Peru-vian anchoveta (Engraulis ringens) off Peru. Agr. Sci., 5: 140–151.
  • SINGH, A.A., SAKURAMOTO, K., SUZUKI, N. 2015. Impact of climatic factors on albacore tuna (Thunnus alalunga) in the South Pacific Ocean. Am. J. Clim. Change, 4: 295–312.
  • SINGH A.A., SAKURAMOTO, K., SUZUKI N., ROSHNI S., NATH P., KALLA A. 2017. Environmental conditions are important influences on the recruitment of North Pacific albacore tuna, Thunnus alalunga. Appl. Ecol. Environ. Res., 15: 299–319.
  • SPC. 2012. Oceanic fisheries and climate change. Secretariat of the Pacific Community, Policy Brief: No. 15/2012.
  • STÖCKL D., DEWITTE K., THIENPONT L.M. 1998. Validity of linear regression in method compa-rison studies: Is it limited by the statistical model or the quality of the analytical input data? Clin. Chem., 44: 2340–2346.
  • SUND P.N., BLACKBURN M., WILLIAMS F. 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol., 19: 443–512.
  • SUZUKI Z., WARASHINA Y., KISHIDA M. 1977. The comparison of catches by regular and deep tuna longline gears in the Western and Central Equatorial Pacific. B. Far Seas Fish. Res. Lab., 15: 51–89.
  • TAKAGI M., OKAMURA T., CHOW S., TANIGUCHI N. 2001. Preliminary study of albacore (Thunnus alalunga) stock differentiation inferred from microsatellite DNA analysis. Fish. B-NOAA., 99: 697–701
  • UEYANAGI S. 1957. Spawning of the albacore in the Western Pacific. Rep. Nankai Reg. Fish. Res. Lab., 6: 113–124.
  • UEYANAGI S. 1969. Observations on the distribution of tuna larvae in the Indo-Pacific Ocean with emphasis on the delineation of the spawning areas of albacore Thunnus alalunga. B. Far Seas Fish. Res. Lab., 2: 177–256.
  • WADA T., JACOBSON L.D. 1998. Regimes and stock-recruitment relationships in Japanese Sardine (Sardinops melanostictus) 1951–1995. Can. J. Fish. Aquat. Sci., 55: 2455–2463.
  • WANG Y., LIU Q. 2005. Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock-recruitment relationships. Fish. Res., 77: 220–225.
  • WILLIAMS P., TERAWASI, P. 2013. Overview of tuna fisheries in the Western and Central Pacific Ocean, including economic conditions – 2012. Western and Central Pacific Fisheries Commission, Scientific Committee Ninth Regular Session, Pohnpei, Federated States of Micronesia, 6–14 August 2013:WCPFC-SC9-2013/GNWP-1.
  • WOLTER K., TIMLIN, M.S. 1998.Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53: 315–324.
  • YOSHIDA H.O. 1968. Early life history and spawning of the albacore, Thunnus alalunga, in Hawaiian waters. Fish. B-NOAA., 67: 205–211.
  • ZAINUDDIN M., SAITOH S.I., SAITOH K. 2004. Detection of potential fishing ground for albacore tuna using synoptic measurements of ocean color and thermal remote sensing in the Northwestern North Pacific. Geophys. Res. Lett., 31: L20311.
  • ZHANG W., JIN F.F., ZHAO J.X., LI J. 2013. On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J. Climate, 26: 3173–3186.
  • ZHANG Y., WALLACE J.M., BATTISTI D.S. 1997. ENSO–like interdecadal variability: 1900–93. J. Climate, 10: 1004–1020.
  • ZHANG Z., HOLMES J., TEO S.L. 2014. A study on relationships between large-scale climate indices and estimates of North Pacific albacore tuna productivity. Fish. Oceanogr., 23: 409–416.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f5b5e15c-3b03-4feb-9954-20cb72bbaf7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.