PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 54 | 1 |

Tytuł artykułu

Do arbuscular mycorrhizal fungi affect metallothionein MT2 expression in Brassica napus L. roots?

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Arbuscular mycorrhizal fungi are the most widespread root fungal symbionts, forming associations with the vast majority of plant species. Ectomycorrhizal development alters gene expression in plant symbionts. In this work we examined the effect of arbuscular mycorrhizal fungi spores on the growth and development of Brassica and on the expression of BnMT2 in winter rape. In a pot experiment, rape seedlings growing on different types of sterile and nonsterile soils were inoculated simultaneously with mycorrhizal fungi spores of Acaulospora longula, Glomus geosporum, Glomus mosseae and Scutellospora calospora. As compared with control plants growing in the absence of spores, ten-week-old seedlings of Brassica napus L. in sterile soil inoculated with arbuscular spores had longer shoots and higher fresh biomass of above-ground plant parts. In other types of substrates enriched with mycorrhizal fungi spores, the plants were smaller than non-inoculated plants. The presence of AMF spores stimulated the elongation growth of hypocotyls in both analyzed substrates. BnMT2 expression was highest in plants growing on the sterile substrate. Generally, the presence of mycorrhizal fungi spores appeared to have an adverse effect on the growth of rape plants.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

54

Numer

1

Opis fizyczny

p.34-39,fig.,ref.

Twórcy

autor
  • Department of Genetics, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100 Torun, Poland
autor

Bibliografia

  • BłASZKOWSKI J, KOWALCZYK S, and CZERNIAWSKA B. 2006. Acaulospora rehmii and Gigaspora margarita, arbuscularmycorrhizal fungi (Glomeromycota) new for Europeand Poland, respectively. Acta Mycologica 41: 41–48.
  • BORIE F, RUBIO R, and MORALES A. 2008. Arbuscular mycorrhizal fungi and soil aggregation. Journal of PlantNutrition and Soil Science 8: 9–18.
  • CHEN H-J, HOU W-C, YANG C-Y, HUANG D-J, LIU J-S, and LIN YH. 2003. Molecular cloning of two metallothionein-likeprotein genes with differential expression patterns fromsweet potato (Ipomoea batatas) leaves. Journal of PlantPhysiology 160: 547–555.
  • CHOI D, KIM HM, YUN HK, PARK J-A, KIM WT, and BOK SH. 1996. Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiology 112: 353–359.
  • CHOMCZYŃSKI P, and SACCHI N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroformextraction. Analytical Biochemistry 162:156–159.
  • CICATELLI A, LINGUA G, TODESCHINI V, BIONDI S, TORRIGIANI P, and CASTIGLIONE S. 2010. Arbuscular mycorrhizal fungirestore normal growth in a white poplar clone grown onheavy metal-contaminated soil, and this is associatedwith upregulation of foliar metallothionein andpolyamine biosynthetic gene expression. Annals ofBotany 106 (5): 791–802.
  • COBBETT C, and GOLDSBROUGH P. 2000. Phytochelatins and metallothioneins: roles in heavy metal detoxification andhomeostasis. Annual Review of Plant Biology 53:159–182.
  • DĄBROWSKA G, KATA A, GOC A, SZECHYŃSKA-HEBDA M, and SKRZYPEK E. 2007. Characteristics of the plant ascorbateperoxidase family. Acta Biologica Cracoviensia SeriesBotanica 49 (1): 7–17.
  • DUNAEVA M, and ADAMSKA I. 2001. Identification of genes expressed in response to light stress in leaves ofArabidopsis thaliana using RNA differential display.European Journal of Biochemistry 268: 5521–5529.
  • GARD N, and CHANDEL S. 2010 Arbuscular mycorrhizal networks: process and functions. A review. Agronomy forSustainable Development 30: 581–599.
  • HRYNKIEWICZ K, DĄBROWSKA G, BAUM C, NIEDOJADłO K, and LEINWEBER P. 2012. Interactive and single effects of ectomycorrhizaformation and Bacillus cereus on metallothioneinMT1 expression and phytoextraction of Cd and Znby willows. Water, Air, & Soil Pollution DOI:10.1007/s11270–011–0915–5.
  • JANSA J, MOZAFAR A, KUHN G, ANKEN T, RUH R, SANDERS IR, and FROSSARD E. 2003. Soil tillage affect the communitystructure mycorrhizal fungi in maize roots. EcologicalApplications 13 (4): 1164–1176.
  • KABIR Z, O'HALLORAN IP, and HAMEL C. 1996. The proliferation of fungal hyphae in soils supporting mycorrhizal andnon-mycorrhizal plants. Mycorrhiza 6: 477–480.
  • KHAN IA, AHMAD S, and AYUB N. 2003. Yield and nutrients uptake of Avena sativa as influenced by vesicular arbuscularmycorrhizal (VAM). Asian Journal of PlantSciences 2 (4): 347–376.
  • KOSZUCKA AM, and DĄBROWSKA G. 2006. Plant metallothioneins. Advances in Cell Biology 33 (2): 285–302. [InPolish].
  • MA M, LAU P-S, JIA Y-T, TSANG W-K, LAM SKS, TAM NFY, and WONG Y-S. 2003. The isolation and characterization oftype 1 metallothionein (MT) cDNA from a heavy-metaltolerantplant, Festuca rubra cv. Merlin. Plant Science164: 51–60.
  • MILLER MH. 2000. Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies. Canadian Journal of Plant Science 80: 47–52.
  • MIR G, DOMENECH J, HUGUET G, GUO W-J, GOLDSBROUGH P, ATRIAN S, and MOLINAS M. 2004. A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. Journal of Experimental Botany 55: 2483–2493.
  • OEHL F, SIEVERDING E, INEICHEN K, RISS E-A, BOLLER T, and WIEMKEN A. 2005. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165: 273–283.
  • OEHL F, SIEVERDING E, INEICHEN K, MADER P, BOLLER T, and WIEMKEN A. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi inagroecosystems of Central Europe. Applied andEnvironmental Microbiology 69: 2816–2824.
  • OLSEN JK, SCHAEFER JT, EDWARDS DG, HUNTER MN, GALEA VJ, and MULLER LM. 1999. Effects of mycorrhizae, establishedfrom an existing intact hyphal network, on thegrowth response of capsicuum (Capsicuum annuum L.)and tomato (Lycopersicon esculentum Mill.) to five ratesof applied phosphorus. Australian Journal of Agricultural Research 50: 223–237.
  • OUZIAD F, HILDEBRANDT U, SCHMELZER E, and BOTHE H. 2005. Differential gene expressions in arbuscular mycorrhizalcolonizedtomato grown under heavy metal stress.Journal of Plant Physiology 162: 634–649.
  • PELLERIN S, MOLLIER A, MOREL C, and PLENCHETTE C. 2007 Effect of incorporation of Brassica napus L. residues insoils on mycorrhizal fungus colonization of roots andphosphorus uptake by maize (Zea mays L.). EuropeanJournal of Agronomy 26: 113–120.
  • READ DJ. 1999. Mycorrhiza – The state of the art. In: Varma A, Hock B [eds.], Mycorrhizae, 3–34. 2nd ed. Springer, Berlin-Heidelberg-New York. RILLING MC, WRIGHT SF, and EVINER V. 2002. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation:omparing effects of five plant species. Plant, Soil andEnvironment 238: 325–333.
  • RILLING MC, WRIGHT SF, NICHOLS KA, SCHMIDT WF, and TORN MS. 2001. Large contribution of arbuscular mycorrhizalfungi to soil carbon pools in tropical forest soils. Plant,Soil and Environment 233: 167–177.
  • RIVERA-BECERRIL F, VAN TUINEN D, MARTIN-LAURENT F, METWALLY A, DIETZ K-J, GIANINAZZI S, and GIANINAZZI-PEARSON V.2005. Molecular changes in Pisum sativum L. roots duringarbuscular mycorrhiza buffering of cadmium stress.Mycorrhiza 16: 51–60.
  • ROBINSON NJ, TOMMEY A.M, KUSKE C, and JACKSON JP. 1993. Plant metallothioneins. Biochemical Journal 295: 1–10.
  • SAMBROOK J, FRITSCH EF, and MANIATIS T. 1989. Molecular Cloning. A Laboratory Manual. Cold Spring HarborLaboratory Press, New York
  • SCANDALIOS JG. 1993. Oxygen stress and superoxide dismutases. Plant Physiology 101: 7–12.
  • SCHREINER RP, and KOIDE RT. 1992. Antifungal compounds from the roots of mycotrophic and non-mycotrophicplant species. New Phytologist 123: 99–105.
  • SMITH S, and READ D. 1997. Mycorrhizal Symbiosis. Academic Press, San Diego, California, USA.
  • SINGH AN, SINGH AR, REXER K-H, KOST G, and VARMA A. 2003. Root endosymbiont: Piriformospora indica – a boon fororchids. Journal of Orchid Society of India 15: 89–102.
  • TURAN M and ESRINGU A. 2007. Phytoremediation based on canola (Brassica napus L.) and Indian mustard(Brassica juncea L.) planted on spiked soil by aliquotamount of Cd, Cu, Pb, and Zn. Plant, Soil andEnvironment 53: 7–15.
  • VARMA A, VARMA S, SUDHA A, SAHAY NS, and FRANKEN P. 1999. Piriformospora indica, a cultivable plant growth promotingroot endophyte with similarities to arbuscular mycorrhizalfungi. Applied and Environmental Microbiology65: 2741–2744.
  • VOIBLET C, DUPLESSIS S, ENCELOT N, and MARTIN F. 2001. Identification of symbiosis-regulated genes in Eucalyptus globules, Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant Journal 25: 181–191.
  • WATRUD LS, KING G, LONDO JP, COLASANTIR R, SMITH BM, WASCHMANN RS, and LEE EH. 2011. Changes in constructed Brassica communities treated with glyphosatedrift. Ecological Applications 21: 525–538.
  • WRIGHT SF, FRANKE-SNYDER M, MORTON JB, and UPADHYAYA A. 1996. Time-course study and partial characterization ofa protein on hyphae of arbuscular mycorrhizal fungi duringactiva colonization of roots. Plant, Soil andEnvironment 181: 193–203.
  • ZHAO S, LIN Q, QI Y, and DUO L. 2010. Responses of root growth and protective enzymes to copper stress in turfgrass.Acta Biologica Cracoviensia Series Botanica 52(2): 7–11.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f5ac49df-44ae-431a-9095-377264c1d924
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.