PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 17 | 1 |

Tytuł artykułu

Ultraviolet vision may be widespread in bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Insectivorous bats are well known for their abilities to find and pursue flying insect prey at close range using echolocation, but they also rely heavily on vision. For example, at night bats use vision to orient across landscapes, avoid large obstacles, and locate roosts. Although lacking sharp visual acuity, the eyes of bats evolved to function at very low levels of illumination. Recent evidence based on genetics, immunohistochemistry, and laboratory behavioral trials indicated that many bats can see ultraviolet light (UV), at least at illumination levels similar to or brighter than those before twilight. Despite this growing evidence for potentially widespread UV vision in bats, the prevalence of UV vision among bats remains unknown and has not been studied outside of the laboratory. We used a Y-maze to test whether wild-caught bats could see reflected UV light and whether such UV vision functions at the dim lighting conditions typically experienced by night-flying bats. Seven insectivorous species of bats, representing five genera and three families, showed a statistically significant ‘escape-toward-the-light’ behavior when placed in the Y-maze. Our results provide compelling evidence of widespread dim-light UV vision in bats.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.193-198,ref.

Twórcy

  • Hawaii Cooperative Studies Unit, University of Hawaii at Hilo, Hilo, Hawaii 96720, USA
autor
  • Fort Collins Science Center, United States Geological Survey, Fort Collins, Colorado 80526, USA
autor
  • Bat Research and Consulting, Tucson, Arizona 85745, USA
autor
  • Bat Research and Consulting, Tucson, Arizona 85745, USA
  • Pacific Island Ecosystems Research Center, United States Geological Survey, Hawaii National Park, Hawaii 96718, USA

Bibliografia

  • 1. J. Altringham , and M. B. Fenton . 2003. Sensory ecology and communication in the Chiroptera. Pp. 90–127, in Bat ecology ( T. H. Kunz and M. B. Fenton , eds.). University of Chicago Press, Chicago, IL, xix + 779. Google Scholar
  • 2. G. P. Bell , and M. B. Fenton . 1986. Visual acuity, sensitivity and binocularity in a gleaning insectivorous bat, Macrotus californicus (Chiroptera: Phyllostomidae). Animal Behaviour, 34: 409–414. Google Scholar
  • 3. Y. Benjamini , and Y. Hochberg . 1995. Controlling the false dis covery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57B: 289–300. Google Scholar
  • 4. A. Boonman , Y. Bar-On , N. Cvikel , and Y. Yovel . 2013. It's not black and whiteon the range of vision and echolocation in echolocating bats. Frontiers in Physiology, 4: 248. Google Scholar
  • 5. J. G. Boyles , and J. J. Storm . 2007. Avoidance of predator chemical cues by bats: an experimental assessment. Behaviour, 114: 1019–1032. Google Scholar
  • 6. E. R. Buchler , and S. B. Childs . 1982. Use of the post-sunset glow as an orientation cue by big brown bats (Eptesicus fuscus). Journal of Mammalogy, 63: 243–247. Google Scholar
  • 7. J. Chase 1981. Visually guided escape responses of microchiropteran bats. Animal Behaviour, 29: 708–713. Google Scholar
  • 8. S. B. Childs , and E. R. Buchler . 1981. Perception of simulated stars by Eptesicus fuscus (Vespertilionidae): a potential navigational mechanism. Animal Behaviour, 29: 1028–1035. Google Scholar
  • 9. W. H. Davis , and R. W. Barbour . 1965. The use of vision in flight by the bat Myotis sodalis. The American Midland Naturalist, 74: 497–499. Google Scholar
  • 10. R. H. Douglas , and G. Jeffery . 2014. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proceedings of the Royal Society, 281B: 2013–2995. Google Scholar
  • 11. S. R. Ellins , and F. A. Masterson . 1974. Brightness discrimination thresholds in the bat, Eptesicus fuscus. Brain, Behav ior and Evolution, 9: 248–263. Google Scholar
  • 12. K. D. Feller , S. Lagerholm , R. Clubwala , M. T. Silver , D. Haughey , J. M. Ryan , E. R. Loew , M. E. Deutschlander , and K. L. Kenyon . 2009. Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vesper ti lionidae). Comparative Biochemistry and Physiology, 154B: 412–418. Google Scholar
  • 13. S. Greif , I. Borissov , Y. Yovel , and R. A. Holland . 2014. A functional role of the sky's polarization pattern for orientation in the greater mouse-eared bat. Nature Communi cations, 5: 4488. Google Scholar
  • 14. D. R. Griffin 1970. Migration and homing of bats. Pp. 233–264, in Biology of bats ( W. A. Wimsatt , ed.) Academic Press, New York, 310 pp. Google Scholar
  • 15. M. Heinrich , A. Warmbold , S. Hoffmann , U. Firzlaff , and L. Wiegrebe . 2011. The sonar aperture and its neural representation in bats. American Journal of Neuroscience, 31: 15618–15627. Google Scholar
  • 16. J. Honkavaara , M. Koivula , E. Korpimaki , H. Siitari , and J. Viitala . 2002. Ultraviolet vision and foraging in terrestrial vertebrates. Oikos, 98: 505–511. Google Scholar
  • 17. G. M. Hope , and K. P. Bhatnagar . 1979a. Electrical response of bat retina to spectral stimulation: comparison of four microchiropteran species. Experientia, 35: 1189–1191. Google Scholar
  • 18. G. M. Hope , and K. P. Bhatnagar . 1979b. Effect of light adaptation on electrical responses of the retinas of four species of bats. Experientia, 35: 1191–1192. Google Scholar
  • 19. D. M. Hunt , and L. Peichl . 2014. S cones: evolution, retinal distribution, development, and spectral sensitivity. Visual Neuroscience, 31: 115–138. Google Scholar
  • 20. D. M. Hunt , S. E. Wilke , J. K. Bowmaker , and S. Poopalasundaram . 2001. Vision in the ultraviolet. Cellular and Molecular Life Sciences, 58: 1583–1598. Google Scholar
  • 21. G. H. Jacobs 1992. Ultraviolet vision in vertebrates. American Zoologist, 32: 544–554. Google Scholar
  • 22. R. J. Kilgour , P. A. Faure , and R. M. Brigham . 2013. Evidence of social preferences in big brown bats (Eptesicus fuscus). Canadian Journal of Zoology, 91: 756–760. Google Scholar
  • 23. T. W. Kraft , D. M. Schneeweis , and J. L. Schnapf . 1993. Visual transduction in human rod photoreceptors. The Journal of Physiology, 464: 747–765. Google Scholar
  • 24. J. N. Lythgoe 1979. The ecology of vision. Clarendon Press, U.K., 244 pp. Google Scholar
  • 25. G. Martin 1990. Birds by night. T & AD Poyser, London, U.K., 240 pp. Google Scholar
  • 26. L. P. McGuire , and M. B. Fenton . 2010. Hitting the wall: light affects the obstacle avoidance ability of free-flying little brown bats (Myotis lucifugus). Acta Chiropterologica, 12: 247–250. Google Scholar
  • 27. M. C. McKenna , and S. K. Bell . 1997. Classification of mammals above the species level. Columbia University Press, New York, 631 pp. Google Scholar
  • 28. S. Mistry , and G. F. McCracken . 1990. Behavioural response of the Mexican free-tailed bat, Tadarida brasiliensis, to visible and infra-red light. Animal Behaviour, 39: 598–599. Google Scholar
  • 29. B. Muller , M. Glosmann , L. Peichl , G. C. Knop , C. Hagemann , and J. Ammermϋller . 2009. Bat eyes have ultraviolet- sensitive cone photoreceptors. PLoS ONE, 4: e6390. Google Scholar
  • 30. B. Muller , E. Butz , L. Peichl , S. Haverkamp . 2013. The rod pathway of the microbat retina has bistratified rod bipolar cells and tristratified all amacrine cells. The Journal of Neuro science, 33: 1014–1023. Google Scholar
  • 31. NEHC (Navy Environmental Health Center). 1992. Ultraviolet radiation guide. Technical manual NEHC. Navy Environmental Health Center, Nor folk, VA, unpaged. Google Scholar
  • 32. D. N. Orbach , and M. B. Fenton . 2010. Vision impairs the abilities of bats to avoid colliding with stationary obstacles. PLoS ONE, 5: e13912. Google Scholar
  • 33. L. Peichl 2005. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? The Anatomical Record, 287A: 1001–1012. Google Scholar
  • 34. R Development Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.Rproject.org. Google Scholar
  • 35. Y.-Y. Shen , B. K. Lim , H.-Q. Liu , J. Liu , D. M. Irwin , and Y.-P. Zhang . 2012. Multiple episodes of convergence in genes of the dim light vision pathways in bats. PLoS ONE, 7: e34564. Google Scholar
  • 36. Y. Shi , and S. Yokoyama . 2003. Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences, 100: 8308–8313. Google Scholar
  • 37. Y. Shi , F. B. Radlwimmer , and S. Yokoyama . 2001. Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proceedings of the National Academy of Sciences of the USA, 98: 11731–11736. Google Scholar
  • 38. R. S. Sikes , and W. L. Gannon . 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 39. R. A. Suthers 1970. Vision, olfaction, taste. Pp. 265–309, in Biology of bats ( W. A. Wimsatt , ed.). Academic Press, New York, 310 pp. Google Scholar
  • 40. R. A. Suthers , and N. E. Wallis . 1970. Optics of the eyes of echolocating bats. Vision Research, 10: 1165–1173. Google Scholar
  • 41. E. C. Teeling , M. S. Springer , O. Madsen , P. Bates , S. J. O'brien , and W. J. Murphy . 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307: 580–584. Google Scholar
  • 42. A. Tsoar , R. Nathan , Y. Bartan , A. Vyssotski , G. Dell'omo , and N. Ulanovsky . 2011. Large-scale navigational map in a mammal. Proceedings of the National Academy of Sciences of the USA, 108: E718–E724. Google Scholar
  • 43. D. Wang , T. Oakley , J. Mower , L. C. Shimmin , S. Yim , R. L. Honeycutt , H. Tsao , and W.-H. Li . 2004. Molecular evolution of bat color vision genes. Molecular Biology and Evolution, 21: 295–302. Google Scholar
  • 44. Y. Winter , J. Lopez , and O. Von Helversen . 2003. Ultraviolet vision in a bat. Nature, 425: 612–614. Google Scholar
  • 45. F. Xuan , K. Hu , T. Zhu , P. Racey , X. Wang , and Y. Sun . 2012a. Behavioral evidence for cone-based ultraviolet vision in divergent bat species and implications for its evolution. Zoologia (Curitiba), 29: 109–114. Google Scholar
  • 46. F. Xuan , K. Hu , T. Zhu , P. Racey , X. Wang , S. Zhang , and Y. Sun . 2012b. Immunohistochemical evidence of conebased ultraviolet vision in divergent bat species and implications for its evolution. Comparative Biochemistry and Physiology, 161B: 398–403. Google Scholar
  • 47. H. Zhao , D. Xu , Y. Zhou , J. Flanders , and S. Zhang . 2009a. Evolution of opsin genes reveals a functional role of vision in the echolocating little brown bat (Myotis lucifugus). Biochemical Systematics and Ecology, 37: 154–161. Google Scholar
  • 48. H. Zhao , S. J. Rossiter , E. C. Teeling , C. Li , J. A. Cotton , and S. Zhang . 2009b. The evolution of color vision in nocturnal mammals. Proceedings of the National Academy of Sciences of the USA, 106: 8980–8985. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f534a765-6295-4da6-98ef-0ea8328ae6ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.