PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 60 | 3 |

Tytuł artykułu

Biomass distribution and dynamics and food web relations in psammon community of a eutrophic lake

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Organisms living in submerged sand along the shore and below the water’s edge in freshwater lake beaches create community called hydropsammon (see Fig. 1 in Preface). Trophic relations between psammon food web components are essential in energy flow, nutrient cycling and functioning of aquatic environments. The seasonal changes in algal, bacterial, nanoflagellate, ciliate, rotifer and crustacean biomass were investigated in hydroarenal (submerged sand) of the eutrophic Lake Mikołajskie (Poland). Sampling cores were taken once or twice a month since April till October 2005 from three layers: adjacent water layer (AWL), layer of water and sand from the transitory level (EPIH – epihydroarenal) and slice of sand (ENDOH – endohydroarenal). The meanannual phytopsammon biomass was extremely high in all microlayers. Bacterial biomass was the highest in the ENDOH. Biomass of nanoflagellates was 4 to 8 times lower than that of bacteria and was the highest in the AWL. The highest mean annual biomass of ciliates was recorded in the EPIH, whereas rotifers dominated in the ENDOH. In contrast, average biomass of Crustacea was the highest in the AWL. Crustaceans dominated heterotrophic biomass in the AWL and EPIH (92 and 54% of the total biomass, respectively) whereas bacteria definitely prevailed in the ENDOH (57%). The ratios of autotrophic to heterotrophic biomass and prey to predator biomass as well as trophic relations between the studied groups of psammon organisms differed clearly among microlayers. The AWL was characterised by the lowest autotrophic/heterotrophic and predator/prey biomass ratios (about 2) and significant positive correlations between nanoflagellates and ciliates as well as between protists and both rotifers and copepods. The highest autotrophic/heterotrophic and predator/prey biomass ratio (14 and 40, respectively) and lack of correlations was found in the ENDOH. These results may suggest that the pressure of consumers was weaker in the hydroarenal layers than in the AWL. In addition, it seems that psammon ciliates, rotifers and crustaceans inhabiting the ENDOH were probably limited by factors other than food availability. In contrast to the pelagic ecosystems, autotrophic biomass exceeded heterotrophic biomass, especially in the ENDOH.

Wydawca

-

Rocznik

Tom

60

Numer

3

Opis fizyczny

p.443-453,fig.,ref.

Twórcy

  • Centre for Ecological Research, Polish Academy of Sciences, Hydrobiological Station, Lesna 13, 11-730 Mikolajki, Poland
autor

Bibliografia

  • Admiraal W., Bouwman L.A., Hoekstra L., Romeyn K. 1983 – Qualitative and quantitative interactions between microphytobenthos and herbivorous meiofauna on a brackish intertidal mudflat – Int. Rev. ges. Hydrobiol. 68: 175–191.
  • Alongi D.M. 1986 – Quantitative estimates of benthic protozoa in tropical marine systems using silica gel: a comparison of methods – Estuar. coast. Shelf. Sci. 23: 443–450.
  • Alongi D.M. 1994 – The role of bacteria in nutrient cycling in tropical mangrove and other coastal benthic ecosystems – Hydrobiologia, 285: 19–32.
  • Bielańska-Grajner I., Molenda T. 2008 – Dependence between occurrence of selected species of psammic rotifers and phytopsammon abundance – Ann. Univ. Mariae Curie-Skłodowska Lublin, Polonia 63: 7–11.
  • Bott T., Borchardt M.A. 1999 – Grazing of protozoa, bacteria, and diatoms by meiofauna in lotic epibenthic communities – J. N. Am. Bentho. Soc. 18: 499–513.
  • Bott T., Kaplan L.A. 1990 – Potential for protozoan grazing of bacteria in streambed sediments – J. N. Am. Benthol. Soc. 9: 336–345.
  • Bottrell H.M, Duncan A., Gliwicz Z.M., Grygierek E., Herzig A., Hillbricht-Ilkowska A., Kurosawa A., Larson P., Węgleńska T. 1976 – A review of some problems in zooplankton production studies – Norw. J. Zool. 24: 419–456.
  • Carlisle D.M., Hawkins C.P. 1998 – Relationships between invertebrate assemblage structure, 2 trout species, and habitat structure in Utah mountain lakes – J. N. Am. Benthol. Soc. 17: 286–300.
  • Czernaś K., Krupa D., Wojciechowski I., Galek J. 1991 – Differentiation and activity changes of algal comminities in the shore zone of mesotrophic Piaseczno Lake in years 1983–1985 – Ekol. Pol. 39: 323–341.
  • Ejsmont-Karabin J. 1998 – Empirical equations for biomass calculation of planktonic rotifers – Pol. Arch. Hydrobiol. 45: 513–522.
  • Ejsmont-Karabin J. 2001 – Psammon rotifers in two lakes of different trophy – their abundance, species, structure and role in phosphorus cycling – Verh. Internat. Verein. Limnol. 27: 3856–3859.
  • Ejsmont-Karabin J. 2003a – Rotifera of lake psammon: community structure versus trophic state of lake waters – Pol. J. Ecol. 51: 5–35.
  • Ejsmont-Karabin J. 2003b – Is sandy beach of the lake an ecotone? Psammon Rotifera in a mesotrophic Lake Kuc (Masurian Lakeland, northern Poland) – Pol. J. Ecol. 51: 219–224.
  • Ejsmont-Karabin J. 2008 – Vertical microzonation of psammon rotifers (Rotifera) in the psammolittoral habitat of an eutrophic lake – Pol. J. Ecol. 56: 351–357.
  • Epstein S.S. 1997 – Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities – Microb. Ecol. 34: 188–198.
  • Epstein S.S, Rossel J. 1995 – Enumeration of sandy sediment bacteria: search for optimal Protocol – Mar. Ecol. Prog. Ser. 117: 289–298.
  • Epstein S.S, Shiaris M.P. 1992 – The rates of microbenthos – and meiobenthos bacterivory in a temperate muddy tidal-flat community – Appl. Environ. Microbiol. 58: 2426–2431.
  • Fenchel T. 1987 – The Ecology of protozoa: The biology of free-living phagotrophic protists – Tech., Madison, Wisconsin, 197 pp.
  • Findlay S., Sobczak W.V. 2000 – Microbial communities in hyporheic sediments (In: Streams and ground waters, Eds: J.B. Jones, P.J. Mulholland) – San Diego, Academic Press, pp. 287–306.
  • Foissner W., Berger H., Blatterer H., Kohmann F. 1991–95 – Taxonomische und okologische Revision der Ciliaten des Saprobiensystems – Band I–IV, Bayer, Landesamt fur Wasserwirtschaft, Munchen. Foissner W., Berger H. 1996 – A user-friendly guide to the ciliates (Protozoa, Ciliophora), commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology – Freshwat. Biol. 35: 375–482.
  • Gasol J.M. 1993 – Benthic flagellates and ciliates in fine freshwater sediments: calibration of a live counting procedure and estimation of their abundances – Microb. Ecol. 25: 247–262.
  • Gucker B., Fischer H. 2003 – Flagellate and ciliate distribution in sediments of a lowland river: relationships with environmental gradients and bacteria – Aquat. Microb. Ecol. 31: 67–76.
  • Gude H., Sala M.M., Witthoft-Muhlmann A. 2003 – Similarities and differences between pelagic and benthic microbial communties – FEMS workshop Assessing the variability in aquatic microbial populations: Facts and fiction. Mondsee, Austria p. 16.
  • Hamels I., Sabbe K., Muylaert K., Vyverman W. 2004 – Quantitative importance, composition, and seasonal dynamics of protozoan communities in polyhaline versus freshwater intertidal sediments – Microb. Ecol. 47: 18–29.
  • Hamels I., Moens T., Muylaert K., Vyverman W. 2001 – Trophic interactions between ciliates and nematodes from an intertidal flat – Aquat. Microb. Ecol. 26: 61–72.
  • Kalinowska K. 2008 – Psammon ciliates: diversity and abundance in hygroarenal of eutrophic lake – Pol. J. Ecol. 56: 259–271.
  • Kalinowska K., Ejsmont-Karabin J., Rybak J.I. 2010 – The role of lake shore sand deposits as bank of ciliate, rotifer and crustacean resting forms: experimental approach – Pol. J. Ecol. 58: 323–332.
  • Kalinowska K., Gorelysheva Z., Ejsmont-Karabin J. 2011 – Psammon algae: composition and spatial distribution in hygroarenal of eutrophic lake – Pol. J. Ecol. 59: 193–200.
  • Kemp P.F. 1988 – Bacterivory by benthic ciliates: significance as a carbon source and impact on sediment bacteria – Mar. Ecol. Prog. Ser. 49: 163–169.
  • McCormick P.V., Cairns J.J. 1991 – Effects of micrometazoa on the protistan assemblage of a littoral food web – Freshwat. Biol. 26: 111–119.
  • Munster U., Chrost R .J. 1990 – Origin, composition and microbial utilization of dissolved organic matter (In: Aquatic microbial Ecology: Biochemical and Molecular Approaches, Eds: J. Overbeck, R.J. Chrost) – New York, Springer-Verlag, pp. 8–46.
  • Nozaki K., Darijav K., Akatsuka T., Goto N., Mitamura O. 2003 – Development of filamentous green algae in the benthic algal community in a littoral sand-beach zone of Lake Biwa – Limnology, 4: 161–165.
  • Pascal P.-Y., Dupuy C., Richard P., Rzeznik-Orignac J., Niquil N. 2008 – Bacterivory of a mudflat nematode community under different environmental conditions – Mar. Biol. 154: 671–682.
  • Pennak R.W. 1951 – Comparative ecology of the interstitial fauna of fresh-water and marine beaches – Ann. Biol. 27: 449–480.
  • Pernthaler J. 2005 – Predation on prokaryotes in the water column and its ecological implications Nat. Rev. Microbiol. 3: 537–546.
  • Pieczyńska E.. Kołodziejczyk A., Rybak J.I. 1999 – The responses of littoral invertebrates to eutrophication-linked changes in plant communities – Hydrobiologia, 391: 9–21.
  • Porter K.G., Feig S. 1980 – The use of DAPI for identifying and counting aquatic microflora – Limnol. Oceanogr. 25: 943–948.
  • Rybak J.I., Węgleńska T. 2003 – Temporal and spatial changes in the horizontal distribution of planktonic Crustacea between vegetated littoral zone and the zone of open water – Pol. J. Ecol. 41: 205–218.
  • Sanders R.W., Wickham S.A. 1993 – Planktonic protozoa and metazoa: predation, food quality and population control – Mar. Microb. Food Webs 7: 197–223.
  • Schmid-Araya J.M. 1994 – Temporal and spatial distribution of benthic microfauna in sediments of a gravel streambed – Limnol. Oceanogr. 39: 1813–1821.
  • Starink M., Bar-Gilissen M.J., Bak R.P.M., Cappenberg T.E. 1996 – Seasonal and spatial variations in heterotrophic nanoflagellate and bacteria abundances in sediments of a freshwater littoral zone – Limnol. Oceanogr. 41: 234–242.
  • Straile D. 1998 – Biomass allocation and carbon flow in the pelagic food web of Lake Constance – Arch. Hydrobiol. Spec. Iss. Advanc. Limnol. 53: 545–563.
  • Stumm K., Berninger U.G. 2005 – Seasonal changes of a benthic microbial community in an intertidal fine sediment – 24. Jahrestagung der Deutschen Gesellschaft fur Protozoologie, Burg Lichtenberg, Pfalz. van Duyl F.C., van Raaphorst W., Kop A.J. 1993 – Benthic bacterial production and nutrient sediment-water exchange in sandy North Sea sediments – Mar. Ecol. Prog. Ser. 100: 85–95.
  • Węgleńska T., Rybak J.I.. 1998 – Diurnal horizontal migrations of planktonic crustaceans between clusters of littoral plants and water-free zone (In: Freshwater ecotones. Structure–Types–Function, Ed. S. Radwan) – UMCS, Lublin, pp 117–129. (in Polish)
  • Weise W., Rheinheimer G. 1978 – Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments – Microb. Ecol. 4: 175–188.
  • Wickham S.A., Nagel S., Hillebrand H. 2004 – Control of epibenthic ciliate communities by grazers and nutrients – Aquat. Microb. Ecol. 35: 153–162.
  • Wiszniewski J. 1934 – Recherches ecologiques sur le psammon et specialement sur les rotiferes psammiques – Arch. Hydrobiol. Ryb. 8: 149–165.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f5191e62-7c49-4583-893c-f50505e397d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.