PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 3 |
Tytuł artykułu

Determinanty nożyc cen w rolnictwie krajów Unii Europejskiej o zróżnicowanej strukturze agrarnej

Warianty tytułu
EN
Determinants of the price scissors in agriculture of the European Union member states featuring different agrarian structures
Języki publikacji
PL
Abstrakty
PL
Wskaźnik produkcji rolnej (agricultural goods output) obejmuje ważone zmiany cen surowców rolnych, podczas gdy wskaźnik zużycia pośredniego opisuje ceny nakładów, takie jak: nasiona, sadzonki, energia, nawozy, polepszacze gleby, środki ochrony roślin lub pasz. Stosunek tych dwóch wskaźników jest definiowany jako „luka cenowa” lub „nożyce cen”. W literaturze przedmiotu istnieje wiele modeli wyjaśniania cen produktów rolnych. Jednak kwestia determinant luki cenowej jest rzadko badana. Z tego powodu autorzy postawili sobie za cel oszacowanie długoterminowych modeli regresji luki cenowej w rolnictwie dla wybranych krajów europejskich, które reprezentują różne struktury agrarne. Powadzona analiza zakłada kilka etapów. W pierwszym z nich długoterminowe indeksy cenowe (od 1980 do 2014 roku) zostały obliczone na podstawie danych Eurostatu i FAOSTAT dla wszystkich dostępnych produktów rolnych i nakładów w krajach UE-27. Następnie zagregowane indeksy ważono wielkością produkcji lub konsumpcji pośredniej na podstawie średnich wskaźników cen dla poszczególnych nakładów lub efektów. W drugim etapie przeprowadzono analizę skupień opartą na wykorzystaniu czynnika ziemi przez poszczególne gospodarstwa rolne w krajach UE-27. W trzecim etapie wybrano do badań po trzy kraje reprezentujące najbardziej skrajne z wyróżnionych klastrów (z rolnictwem rozdrobnionym oraz wysokowydajnym, silnym ekonomicznie) i oszacowano dla ich rolnictwa modele ekonometryczne luki cenowej, gdzie indeksy efektów i nakładów są zmiennymi niezależnymi. Interesująca jest obserwacja, że marginalne efekty są znacznie silniejsze w modelach dla krajów, gdzie mamy do czynienia z rolnictwem intensywnym i na dużą skalę (jak we Francji, Wielkiej Brytanii i Danii), aniżeli w krajach o rozdrobnionej strukturze agrarnej, takich jak Grecja, Portugalia i Irlandia.
EN
The index of agricultural goods output comprises weighted changes of prices of agricultural commodities whereas the index of intermediate consumption describes fluc tuations of input prices, including seeds and nursery stock, energy, fertilizers, soil im provers, plant protection products or feedstuffs. The relation of these two indices is defined as “price gap” or “price scissors”. There are a lot of price models for agricultural goods in the literature. However, the issue of modeling drivers for the price gap has rarely been explored. For that reason the authors aim to estimate long-term regression models of the agricultural price gap for different European countries that represent varied agrarian structures. The analysis entails a few stages. In the first stage, the long-term price indices (from 1980 to 2014) were computed based on EUROSTAT and FAOSTAT agricultural prices data for all available agricultural products and inputs in the EU-27. Then, the aggregated indices were weighted with a volume of production or intermediate consumption on the basis of the average price indices for the respective outputs or inputs. In the second stage, a cluster analysis was carried out with regard to the utilization of agricultural land factor by individual farms in the subsequent European Union Member States. In the third stage, three countries were chosen for case studies from each of the distinguished clusters and the econometric models of price gap were estimated where the indices of outputs and inputs were independent variables. An interesting finding was made that marginal effects for price gap drivers were much stronger in the countries of an intensive and large scale agriculture (such as France, the UK and Denmark) than in the countries of fragmented agrarian structures such as Greece, Portugal and Ireland.
Wydawca
-
Czasopismo
Rocznik
Numer
3
Opis fizyczny
s.7-40,rys.,tab.,bibliogr.
Twórcy
autor
  • Katedra Edukacji i Rozwoju Kadr, Uniwersytet Ekonomiczny w Poznaniu, ul.Powstańców Wlkp. 16, 60-101 Poznań
  • Katedra Makroekonomii i Gospodarki Żywnościowej, Uniwersytet Ekonomiczny w Poznaniu, ul.Powstańców Wlkp. 16, 60-101 Poznań
  • Katedra Makroekonomii i Gospodarki Żywnościowej, Uniwersytet Ekonomiczny w Poznaniu, al.Niepodległości 10, 61-875 Poznań
Bibliografia
  • Adalto A.A. Jr, Marcelo S.B., Adalto B.G. (2014). Forecasting Agricultural Commodities Spot Prices: A Jointly Approach. WORKING PAPER 25/04/2014. Instituto de Ensino e Pesquisa.
  • Ashutosh K.T. (2013). Agricultural price policy, output, and farm profitability – examining linkages during post-reform period in India. Asian Journal of Agriculture and Development, 10 (1), 91–111.
  • Bollerslev T.A. (1987). Conditionally heteroskedastic time-series model for speculative prices and rates of return. The Review of Economics and Statistics, 69, 542–547.
  • Bucharest University of Economic Studies. (2015). Faculty of Economics, Romanian Economists General Association, Romanian Association of Economic Faculties, Theoretical and Applied Economics, Volume XXII, Bucharest, Special Issue, http://store.ectap.ro/suplimente/Post-crisis-developments-in-Economics-nov-2014.pdf [dostęp: 11.03.2016].
  • Co H.C., Boosarawongse R. (2007). Forecasting agricultural exports and imports in South Africa. Applied Economics, 39 (16), 2069–2084.
  • Cochrane W.W. (1958). Farm Prices: Myth and Reality. Minneapolis: University of Minnesota Press.
  • COM. (2010). Communication From The Commission To The European Parliament. The Council, The European Economic And Social Committee and The Committee of The Regions. The CAP towards 2020: Meeting The Food, Natural Resources And Territorial Challenges of The Future. COM/2010/0672.
  • Czyżewski B., Nicula Alexandra, Nicula Amalia (2016). Drivers for the agricultural price gap in the different agrarian structures of the EU. Progress in Economic Sciences, 3, 14–28.
  • Enke D., Thawornwong S. (2005). The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications, 29, 927–940.
  • Eurostat statistics explained. (2015). Agricultural output, price indices and income, http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_output,_price_indices_and_income#Price_indices [dostęp: 11.03.2016].
  • Eurostat statistics explained. (2016). Agricultural products, http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_products [dostęp: 11.03.2016].
  • Eurostat. (2013), http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:-ESU [dostęp:16.07.2013].
  • Everitt B.S., Landau S., Leese M., Stahl D. (2011). Cluster Analysis (wyd. 5). Chichester, West Sussex, UK: Wiley Online Library.
  • Fischer P. (2006). Rent-seeking, Institutions and Reforms in Africa: Theory and Empirical Evidence for Tanzania. New York: Springer.
  • Food and Agriculture Organization of the United Nations. (1988). Manual on agricultural price index numbers, Economic and Social development paper, 74, Rome, http://www.fao.org/fileadmin/templates/ess/ess_test_folder/World_Census_Agriculture/Publications/FAO_ESDP/ESDP_74_Manual_on_agricultural_price_index_numbers.pdf [dostęp: 11.03.2016].
  • Gatnar E., Walesiak M. (red.) (2004). Metody statystycznej analizy wielowymiarowej w badaniach marketingowych. Wrocław: Wydawnictwo Akademii Ekonomicznej im. Oskara Langego.
  • Kusz D. (2012). Egzogeniczne i endogeniczne uwarunkowania procesu modernizacji rolnictwa. Roczniki Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich, 99 (2), 53–67.
  • Labys W.C. (2006). Modeling and Forecasting Primary Commodity Prices. Burlington: Routledge.
  • Levins R.A., Cochrane W.W. (1996). The Treadmill revisited. Land Economics, 72, 550–553.
  • Malpezzi S. (2003). Hedonic pricing models: A selective and applied review. W: O’Sullivan T., Gibb K. (red.). Housing Economics and Public Policy: Essays in honor of Duncan Maclennan (s. 130–134). Oxford: Blackwell.
  • Matuszczak A. (2013). Zróżnicowanie rozwoju rolnictwa w regionach unii europejskiej w aspekcie jego zrównoważenia. Warszawa: Wydawnictwo Naukowe PWN.
  • Mellor J.W., Raisuddin A. (1989). Agricultural Price Policy for Developing Countries. London: The International Food Policy Research Institute.
  • Moss C.B. (1992). The cost price squeeze in agriculture: An application of cointegration. Review of Agricultural Economics, 14 (1), 209–217.
  • Moss C.B., Shonkwiler J.S., Ford S.A. (1990). A risk endogenous model of aggregate agricultural debt. Agricultural Finance Review, 50, 73–79.
  • Octavio A.R., Mohamadou F. (2003). Forecasting agricultural commodity prices with asymmetric-error GARCH models. Journal of Agricultural and Resource Economics, 28 (1), 1–85.
  • OECD. (2000). A Matrix Approach to Evaluating Policy: Preliminary Findings from PEM Pilot Studies of Crop Policy In the EU, the US, Canada and Mexico. OECD Directorate for Food, Agriculture and Fisheries Trade Directorate, Paris.
  • Poczta W., Mrówczyńska A. (2002). Regionalne zróżnicowanie polskiego rolnictwa. W: Poczta W., Wysocki F. (red.). Zróżnicowanie regionalne gospodarki żywnościowej w Polsce w procesie integracji z Unią Europejską (s. 128–136). Poznań: Wydawnictwo AR im. Augusta Cieszkowskiego.
  • Poczta-Wajda A. (2013). The Role of Olson’s Interest Groups Theory in Explaining the Different Level of Agricultural Support in Countries with Different Development Level. Production and Cooperation in Agriculture Finance and Taxes; no. 30, Jelgava: Ministry of Rural. Development and Food.
  • Poczta-Wajda A. (2015). Why “rich” farmers demand financial support. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, 17 (4), 237–242.
  • Saab M. (2011). Define agricultural price policy and what are the objectives of agricultural price policy, Study Points, Easy notes and assignments, http://studypoints.blogspot.ro/2011/07/define-agricultural-price-policy-and_8377.html [dostęp: 11.03.2016].
  • Shahwan T., Odening M. (2007). Forecasting agricultural commodity prices using hybrid neural networks. W: Chen S.-H., Wang P.P., Kuo T.-W. (red.). Computational Intelligence in Econmics and Finance, t. 2 (s. 223–226). Berlin Heidelberg, Germany: Springer-Verlag.
  • Swinnen J. (2008). The Political Economy of Agricultural Distortions: The Literature to Date. Paper for the IATRC Meeting, Scotsdale.
  • Ticlavilca A.M., Feuz D.M., McKee M. (2010). Forecasting Agricultural Commodity Prices Using Multivariate Bayesian Machine Learning Regression. St. Louis, Missouri.
  • Urząd Publikacji Unii Europejskiej (2002). Office for Official Publications of the European Communities. Handbook for EU Agricultural Price Statistics. Luxembourg.
  • Wang K.L., Fawson C., Barrett C.B., McDonald J.B. (2002). A flexible parametric GARCH model with an application to exchange rates. Journal of Applied Econometrics, 16, 521–536.
  • Wieliczko B. (2013). Wspólna polityka rolna w latach 2014–2020 – odpowiedź na niesprawność rynku czy wyraz niesprawności państwa. Roczniki Naukowe Ekonomii, Rolnictwa i Rozwoju Obszarów Wiejskich, 3 (100).
  • Wiking Educational Publishers. (2013). http://www.wiking.edu.pl/article.php?id=272 [dostęp:15.01.2013].
  • World Bank Group. (2015). Global Economic Prospects. Having Fiscal Space and Using It. Washington, DC. https://www.worldbank.org/content/dam/Worldbank/GEP/GEP-2015a/pdfs/GEP15a_web_full.pdf [dostęp: 11.03.2016].
  • Yang S.-R., Brorsen B.W. (1992). Nonlinear dynamics of daily cash prices. American Journal of Agricultural Economics, 74 (3), 706–715.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-f5141287-9028-4c26-8845-13e46296fb04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.