PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

Sensitivity of soil enzymes to excessive zinc concentrations

Treść / Zawartość

Warianty tytułu

PL
Oporność enzymów glebowych na nadmierne ilości cynku

Języki publikacji

EN

Abstrakty

EN
The sensitivity of soil enzymes to soil contamination with zinc was analyzed. A laboratory experiment was performed on sandy loam at pH 7.0, sampled from arable land at a depth of 0 to 20 cm. Soil samples were passed through a sieve with 2 mm mesh size and contaminated with the following zinc doses: 0, 300, 600, 1200 and 2400 mg Zn2+ kg-1 soil. Zinc was applied in the form of aqueous solution of ZnCl2. Soil was mixed thoroughly with zinc, and its moisture content was brought to 50% capillary water capacity. The samples were incubated at 25°C. Beakers with soil samples were weighed once a week to replenish evaporated water. The activity of soil enzymes: dehydrogenases, urease, acid phosphatase, alkaline phosphatase, catalase, arylsulfatase and b-glucosidase, was determined after 15, 30, 60 and 120 days of the experiment. The results were used to calculate soil resistance (RS), ED20 and ED50 values. The results of the study indicate that soil enzymes are characterized by varied sensitivity to excessive zinc concentrations, and that the RS index is a reliable measure of enzymatic responses to zinc pollution. The analyzed enzymes were classified in the following decreasing order in terms of their resistance to zinc: b-glucosidase> acid phosphatase > urease >arylsulfatase = alkaline phosphatase> catalase > dehydrogenases. Zinc continued to exert a negative effect on soil enzymes throughout the experiment (120 days). ED20 values for the analyzed enzymes in mg Zn2+ kg-1 DM soil were determined at: 103 for dehydrogenases, 184 for alkaline phosphatase, 233 for urease, 247 for arylsulfatase, 416 for acid phosphatase, 419 for catalase and 1373 for b-glucosidase.
PL
Celem badań było określenie wrażliwości enzymów na zanieczyszczenie gleby cynkiem. Doświadczenie przeprowadzono w warunkach laboratoryjnych na glinie piaszczystej o pH 7,0, pobranej z użytku rolnego z warstwy od 0 do 20 cm. Przed rozpoczęciem badań glebę przesiano przez sito o oczkach 2 mm i zanieczyszczono następującymi dawkami cynku: 0, 300, 600, 1200, 2400 mg Zn2+ kg-1 gleby. Cynk stosowano w postaci wodnego roztworu ZnCl2. Następnie po dokładnym wymieszaniu gleby jej wilgotność doprowadzono do 50% kapilarnej pojemności wodnej i poddano inkubacji w cieplarce w temp. 25°C. Jeden raz w tygodniu zlewki przeważano w celu uzupełnienia ewentualnych ubytków wody. Po 15, 30, 60 i 120 dniach inkubacji część zlewek likwidowano i oznaczono aktywność enzymów glebowych: dehydrogenaz, ureazy, fosfatazy kwaśnej, fosfatazy alkalicznej, katalazy, arylosulfatazy i b-glukozydazy. Na podstawie wyników obliczono indeks oporności enzymów (RS) oraz wskaźniki ED20 i ED50. Stwierdzono, że enzymy glebowe mają zróżnicowaną oporność na nadmiar cynku w glebie, a wskaźnik oporności RS jest dobrą miarą ich reakcji na zanieczyszczenie tym metalem. Pod względem zmniejszającej się oporności można je uszeregować następująco: b-glukozydaza> fosfataza kwaśna > ureaza >arylosulfataza = fosfataza kwaśna > katalaza > dehydrogenazy. Negatywne działanie cynku na enzymy glebowe utrzymywało się przez cały okres badań (120 dni).Wartość ED20 dla poszczególnych enzymów w mg Zn2+ kg-1s.m. gleby wynosiła: dehydrogenazy – 103, fosfataza alkaliczna – 184, ureaza – 233, arylosulfataza – 247, fosfataza kwaśna – 416, katalaza – 419, b-glukozydaza – 1373.

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.637-647,fig.,ref.

Twórcy

autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Pl.Lodzki 3, 10-727 Olsztyn, Poland
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
autor
  • Chair of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

Bibliografia

  • Adriano D. C., Wenzel W. W., Vangronsveld J., Bolan N. S. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma. 122: 121-142. DOI:10.1016/j.geoderma. 2004.01.003.
  • Alef K., Nannipieri P. 1998. Urease activity In: Methods in applied soil microbiology and biochemistry. Alef K., Nannipieri P. (eds), Acad. Press. Harcourt Brace & Company, Publishers, London, 316-320.
  • Bielińska E.J., Baranowska E., Jędruch M., Gostkowska K. 2005. Appraisal of allotment soil environment from areas under the varying influence of anthropopressure through analysis of phosphate activity. Environ.Engineer.,13: 26-28.
  • Bielińska E.J., Żukowska G. 2002. Activity of protease and urease in light soil fertilized with sewage sludge. Acta Agroph., 70: 41-47. (in Polish)
  • Boros E., Baćmaga M., Kucharski J., Wyszkowska J. 2011. The usefulness of organic substancesand plant growth in neutralizing the effects of zinc on the biochemical properties of soil. Fresen. Environ. Bull., 20(12): 3101-3109.
  • Borowik A. Wyszkowska J., Kucharski J., Baćmaga M., Tomkiel M. 2014. Pressure exerted by zinc on the nitrification process. J. Elem., 19(2): 327-338. DOI: 10.5601/jelem.2014.19.2.646.
  • Brockett F. T., Prescott C. E., Grayston S.J. 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem., 44: 9-20. DOI:10.1016/j.soilbio.2011.09.003
  • Bruins M. R., Kapil S., Oehme F. W. 2000. Microbial resistancetometals in the environment. Ecotox. Environ. Safe., 45: 198-207. DOI:10.1006/eesa.1999.1860
  • Chary N. S., Kamala C. T., Raj D. S. S. 2008. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotox. Environ. Safe., 69: 513-524. DOI:10.1016/j.ecoenv.2007.04.013
  • Cui Y., Zhao N. 2011. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ., 57(1): 34-39.
  • Gill et S., Ponge J. F. 2002. Humus forms and metal pollution in soil. Eur. J. Soil Sci., 53: 529. DOI:10.1046/j.1365-2389.2002.00479.x
  • Glina B., Bogacz A. 2013. Concentration and pools of trace elements in organic soils in the Izera Mountains. J. Elem., 18(2): 199-209. DOI: 10.5601/jelem.2013.18.2.01
  • Gülser F., Erdogan E. 2008. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess., 145(1-3): 127-133. DOI: 10.1007/s10661-007-0022-7
  • Huang S. S., Tu J., Liu H. Y., Hua M., Liao Q. L., Feng J. S., Weng Z. H., Huang G. M. 2009. Multivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River Delta, East China. Atmos. Environ., 43: 5781-5790. DOI:10.1016/j.atmosenv. 2009.07.055
  • Jonak C., Nakagami H., Hirt H. 2004. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathawahys by copper and cadmium. Plant Physiol., 136: 3276-3283. DOI/10.1104/pp.104.045724
  • Kizilkaya R. 2004. Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil. Ecol. Eng., 22 (2): 141-151. DOI:10.1016/j.ecoleng.2004.04.002
  • Kucharski J., Boros E., Wyszkowska J. 2009. Biochemical activity of nickel-contaminated soil. Polish. J. Environ., St., 18(6):1039-1044.
  • Kucharski J., Wieczorek K., Wyszkowska J. 2011. Changes in the enzymatic activity in sandy loam soil exposed to zinc pressure. J. Elem., 16(4): 577-589. DOI: 10.5601/jelem.2011.16.4.07
  • Kucharski J., Wyszkowska J. 2004. Inter-realtionship between number of microorganisms or spring barley yield and degree of soil contamination with copper. Plant Soil Environ., 50(6): 243-249.
  • Kucharski J., Wyszkowska J., Nowak G., Harmś H. 2000. Activity of enzymes in soils treated with sewage sludges. Pol. J. Soil Sci., 33(1): 29-36.
  • Lee S. H., Lee J. S., Choi Y. J., Kim J. G. 2009. In situ stabilization of cadmium-, lead-and zinc-contaminated soil using various amendments. Chemosphere., 77(8): 1069-1075. DOI: 10.1016/j.chemosphere.2009.08.056
  • Lestan D., Grcman H., Zupan M., Bacac N. 2003. Relationship of soil properties to fractionation of Pb and Zn in soil and their uptake into Plantago lanceolata. Soil Sediment Contam., 12 (4): 507-522. DOI: 10.1080/713610986.
  • Melg ar-Ramírez R., González V., Sánchez J. A., Garcíai. 2012. Effects of application of organic and inorganic wastes for restoration of sulphur-mine soil. Water Air Soil Pollut., 223: 6123- -6131. DOI: 10.1007/s11270-012-1345-8
  • Nielsen, M. N., Winding, A. 2002. Microorganisms as indicators of soil health. Nat. Environ. Res. Inst., Denmark. Technical Report No. 388.
  • Öhlinger R. 1996. Dehydrogenases activity with the substrate TTC. In: Methods in soil biology. Schinner F., Öhl inger R., Kandeler E., Margesin R. (eds). Springer Verlag Berlin Heidelberg, 241-243.
  • Orwin K.H, Wardle D.A. 2004. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem., 36: 1907-1912. DOI:10.1016/j.soilbio. 2004.04.036
  • Qu J., Ren G., Chen B., Fan J., E Y. 2011. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environ. Monit. Assess., 182: 597-606. DOI: 10.1007/s10661-011-1900-6
  • Renella G., Mench M., Landi L., Nannipieri P. 2005. Microbial diversity and hydrolase synthesis in longterm Cd-contaminated soils. Soil Biol. Biochem., 37(1): 133-139. DOI: 10.1016/j.soilbio.2004.06.015
  • Roca-Perez L., Gil C., Cervera M.L., Gonza´lv ez A., Ramos-Miras J., Pons V., Bech J., Boluda R. 2010. Selenium and heavy metals content in some Mediterranean soils. J Geochem. Explor., 107: 110-116. DOI:10.1016/j.gexplo.2010.08.004
  • Rodriguez B. B., Bolbot J. A., Tothill I. E. 2004. Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens. Bioelectron., 19(10): 1157-1167. DOI: 10.1016/j.bios.2003.11.002
  • Schwartz Ch., Gerard E., Perronnet K., Morel J. L. 2001. Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Sci. Total. Environ., 279: 215-221.
  • Seifert K., Domka F. 2005. Inhibiting effect of surfactants and heavy metal ions on the nitrification process. Pol. J. Environ. Stud., 14(1): 87-93.
  • Sienkiewicz S., Czarnecka M.H. 2012. Content of available Cu, Zn and Mn in soil amended with municipal sewage sludge. J. Elem., 17(4): 649-657. DOI: 10.5601/jelem. 2012.17.4.08
  • STATSOFT Inc. 2012. Statistica (data analysis software system), version 10.0. www.statsoft.com Szymańska-Pulikowska A. 2012. Changes in the content of selected heavy metals in groundwater exposed to the impact of a municipal landfill site. J. Elem., 17(4): 689-702, DOI: 10.5601/jelem.2012.17.4.11
  • Wang Ch., Yang Z., Yuan X., Browne P., Chen L., Ji J. 2013. The influences of soil properties on Cu and Zn availability in soil and their transfer to wheat (Triticum aestivum L.) in the Yangtze River delta region, China. Geoderma, 193-194:131-139. DOI.org/10.1016/j.geoderma. 2012.10.004
  • Wang D., Hosteen O., Fierke C. A. 2012. ZntR-mediated transcription of ZntA responds to nanomolar intracellular free zinc. J. Inorg. Biochem., 111: 173-181. DOI:10.1016/j.jinorgbio. 2012.02.008
  • Wang H., Liu R.L., Jin J.Y. 2009. Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biol. Plantarum., 53: 191-194.
  • Wyszkowska J., Boros E., Kucharski J. 2007. Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ., 53(12): 544-552.
  • WyszkowskaJ., Borowik A., Kucharski M., Kucharski J. 2013. Applicability of biochemical indices to quality assessmnet of soil pulluted with heavy metals. J. Elem., 18(4): 733-756, DOI: 10.5601/jelem.2013.18.4.504.
  • Wyszkowska J., Kucharski J., Jastrzębska E., Hłasko A. 2001. The biological properties of the soil as influenced by chromium contamination. Pol. J. Environ. Stud. St., 10(1): 37-42.
  • Wyszkowska J., Kucharski M., Kucharski J. 2010. Activity of β-glucosidase, arylsuphatase and phosphatases in soil contaminated with copper. J Elem., 15(1): 213-226. DOI: 10.5601/jelem.2010.15.1.213-226.
  • Wyszkowska J., Kucharski M., Kucharski J., Borowik A. 2009. Activity of dehydrogenases, catalase and urease in copper polluted soil. J. Elem., 14(3): 605-617.
  • Wyszkowski M., Wyszkowska J. 2009. The effect of soil contamination with cadmium on the growth and chemical composition of spring barley (Hordeum vulgare L.) and its relationship with the enzymatic activity of soil. Fresen. Environ. Bull., 18 (7):1046-1053.
  • Zhao K. L., Liu X. M., XuJ. M., Selim H. M. 2010. Heavy metal contaminations in a soil- rice system: identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard. Mater., 181: 778-787. DOi:10.1016/j.jhazmat.2010.05.081.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f4efb200-05b7-4a3b-b3af-7747487835e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.