Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 38 | 1 |
Tytuł artykułu

Two methods of sample preparation for analysis of non-ortho and mono-ortho PCB congeners in the muscles of selected fish species

Warianty tytułu
Języki publikacji
Background. Polychlorinated biphenyls (PCBs) are persistent organic pollutants widespread in the environment. Their ability to accumulate in living organisms leads to food contamination, which is the main route of human exposure to PCBs. During analytical procedure of PCB residue determination, losses of these compounds may occur, which contribute to obtaining underestimated analytical results. Adequate analytical method of chlorobiphenyls determination should be applied to avoid the losses and obtain high recoveries and furthermore to enable accurate estimation of the risk of consuming contaminated food. Especially fish, due to the high bioaccumulation, may contain considerable amounts of these compounds. The aim of this study was to determine if the method of sample preparation influences the recovery of non-ortho (PCB 77, 81, 126, 169) and mono-ortho (PCB 105, 114, 156, 157) PCB congeners in selected fish species. Materials and Methods. To prepare samples for chromatographic determination (HP 6890/5973 GC MS) two methods were applied. Fish muscle tissues were dried by rubbing in a mortar with anhydrous sodium sulphate or freeze dried (lyophilised) (LyoLAB 3000). The samples were fortified with a known amount of internal standard (decachlorobiphenyl), and some were additionally fortified with the standard solution of analysed PCB congeners. Results. nternal standard recoveries ranged from 57.61 ± 1.21% to 88.76 ± 4.03% in freeze-dried samples, and from 63.81 ± 5.11% to 97.50 ± 6.14% in samples rubbed with anhydrous sodium sulphate. Following lyophilisation, recoveries of analysed PCB congeners varied from 68.88 ± 11.74% for PCB 157 to 79.18 ± 12.33% for PCB 114. In the samples rubbed with anhydrous sodium sulphate the lowest recovery was determined for PCB 77 (72.40 ± 12.34%), the highest being typical for PCB 156 (83.47 ± 12.86%). Following lyophilisation, toxic equivalents (TEQs) for the examined fish species ranged from 0.0050 ng-TEQ·g-1 dry weight in salmon to 0.0299 ng-TEQ·g-1 dry weight in mackerel. Following rubbing with anhydrous sodium sulphate the highest toxic equivalent (0.0326 ng-TEQ·g-1 dry weight) was calculated for mackerel, and the lowest for salmon (0.0055 ng-TEQ·g-1 dry weight). Conclusion. The research has demonstrated that in most cases the results obtained with both methods have not differed significantly (P < 0.05), although freeze drying resulted in slightly higher losses of PCB congeners. Despite of smaller recoveries, freeze drying can be applied because of solvent saving and easier sample preparation.
Opis fizyczny
  • Division of Toxicology, Agricultural University of Szczecin, Szczecin, Poland
  • Anonymous 2004. Statistical Yearbook of Maritime Economy. Central Statistical Office in Szczecin. Warszawa – Szczecin 2004.
  • Anonymous 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels of certain contaminants in foodstuffs. Official Journal of the European Union L 364/5
  • Atuma S.S., Aune M., Bergh A., Wicklund-Glynn A., Darnerud P.O., Larsson L., Olsson M., Sandstrom O. 1998. Polychlorinated biphenyls in salmon (Salmo salar) from the Swedish east coast. Organohalogen Compounds 39: 153–156.
  • Baars A.J., Bakker M.I., Baumann R.A., Boon P.E., Freijer J.I., Hoogenboom L.A.P., Hoogerbrugge R., van Klaveren J.D., Liem A.K.D., Traag W.A., de Vries J. 2004. Dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs: occurrence and dietary intake in the Netherlands. Toxicology Letters 151: 51–61.
  • Berdié L., Grimalt J.O. 1998. Assessment of the sample handling procedures in a labor-saving method for analysis of organochlorine copmounds in a large number of fish sample. Journal of Chromatography A 823: 373–380.
  • Brzeziński J. 2002. Toksykologia pestycydow. [Toxicology of pesticides.] Pp. 605–660. In: Seńczuk W. (ed.) Toksykologia. [Toxicology.] PZWL, Warszawa. [In Polish.]
  • Ciereszko W., Tomza A., Witczak A. 2004. Zawartości wybranych kongenerów polichlorowanych biphenyli (PCB) w konserwach z tuńczyka. [The contents of selected of polychlorinated biphenyls congeners (PCB) in tinned tuna.] Acta Scientiarum Polonorum; Technologia Alimentaria 3 (2): 57–62.
  • Ciereszko W., Witczak A. 2002. Concentration of PCBs and selected pesticides in bottom sediments, zebra mussel and in some more important fish species of the Szczecin Lagoon. Acta Ichthyologica et Piscatoria 32: 35–40.
  • Ciereszko W. 2002. Polychlorinated hydrocarbons in fishes, blue mussel (Mytilus edulis), and bottomsediments of the south-western Baltic Sea. Acta Ichthyologica et Piscatoria 32: 127–135.
  • Crimmins B.S., Doelling Brown P., Kelso D.P., Foster G.D. 2002. Bioaccumulation of PCBs in aquatic biota from a tidal freshwater marsh ecosystem. Archives of Environment Contamination and Toxicology 42: 396–404.
  • Davis J.A., Hetzel F., Oram J.J., McKee L.J. 2007. Polychlorinated biphenyls (PCBs) in San Francisco Bay. Environmental Research 105: 67–86.
  • de Voogt P., van der Wielen F.W.M., Govers H.A.J. 2000. Freeze-drying brings about errors in polychlorinated biphenyl recovery calculations. Trends in Analytical Chemistry 19: 292–299.
  • Falandysz J. 1982. Wpływ przetwarzania na zawartość polichlorowanych dwufenyli w produktach spożywczych. [The effect of processing on concentrations of polychlorinated biphenyls in foodstuffs.] Roczniki Państwowego Zakładu Higieny 33: 27–33. [In Polish.]
  • Falandysz J., Wyrzykowska B., Puzyn T., Strandberg L., Rappe C. 2002. Polychlorinated biphenyls (PCBs) and their congener-specific accumulation in edible fish from the Gulf of Gdańsk, Baltic Sea. Food Additives and Contaminants 19: 779–795.
  • Kulkarni M.G., Kavara A.H. 1990. A pharmacokinetic model for the disposition of polychlorinated biphenyls (PCBs) in channel catfish. Aquatic Toxicology 16: 141–150.
  • Paasivirta J., Koistinen J., Rantio T., Vourinen P.J. 1994. Persistent organochlorine compounds in Arctic and Baltic fish. Organohalogen Compounds 20: 529–534.
  • Roose P., Cooreman K., Vyncke W. 1998. PCBs in cod (Gadus morhua), flounder (Platichthys flesus), blue mussel (Mytilus edulis) and brown shrimp (Crangon crangon) from the Belgian continental shelf: Relation to biological parameters and trend analysis. Chemosphere 37: 2199–2210.
  • Ruus A., Ugland K.I., Espeland O., Skaare J.U. 1999. Organochlorine contaminants in a local marine food chain from Jarfjord, Northern Norway. Marine Environmental Research 48: 131–146.
  • Safe S. 1994. Polichlorinated biphenyls (PCBs) environmental impact, biochemical and toxic responses, and implications for risk assessment. CRC Critical Review of Toxicology 24: 87–149.
  • Strandberg B.O., Van Bavel B., Bergqvist P.-A., Broman D., Ishaq R., Näf C., Pettersen H., Rappe C. 1998. Occurrence, sedimentation, and spatial variations of organochlorine contaminants in settling particulate matter and sediments in the Northern Part of the Baltic Sea. Environmental Science and Technology 32: 1754–1759.
  • Thomas G.O., Sweetman A.J., Parker C.A., Kreibich H., Jones K.C. 1998. Development and validation of methods for the trace determination of PCBs in biological matrices. Chemosphere 36: 2447–2459.
  • Van den Berg M., Birnbaum L.S., Denison M., De Vito M., Farland W., Feeley M., Fiedler H., Hakansson H., Hanberg A., Haws L., Rose M., Safe S., Schrenk D., Tohyama C., Tritscher A., Tuomisto J., Tysklind M., Walker N., Peterson R.E. 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences 93: 223–241.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.