Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Remediation of Cd-, Pb- and Cu-contaminated agricultural soils by phosphate fertilization and applying biochar

Warianty tytułu
Języki publikacji
In this study, biochar (BC), triple superphosphate (TSP), and TSP+BC amendments were utilized for remediation of Cd, Pb, and Cu co-contaminated agricultural soils. The toxicity characteristic leaching procedure (TCLP), the European Community Bureau of Reference (BCR), X-ray diffraction, and scanning electron microscopy-energy dispersive spectrometer techniques were employed to evaluate the effectiveness of the three types of amendments. After soil amendment, pH, heavy metal concentrations in TCLP extracts, and BCR speciation of heavy metals showed significant changes. The application of BC, TSP, and TSP+BC to co-contaminated soils slightly increased soil pH; decreased Pb, and Cu leachability in the TCLP extracts; and lowered the concentrations of the acid-soluble fraction of heavy metals. The application of TSP+BC mixture at the same dose as BC and TSP produced the greatest reduction in available heavy metal concentration. The optimum mass ratio of TSP to BC was 1:3. Overall, the TSP+BC mixture was highly effective in immobilizing Cd, Pb, and Cu in co-contaminated agricultural soils. The experimental results demonstrate that the rational application of the TSP and BC provides benefits of retrenching phosphorus resources, decreasing phosphorus pollution, and lowering the feed costs of debasing soil remediation treatments.
Słowa kluczowe
Opis fizyczny
  • PowerChina Chengdu Engineering Corporation Limited, Chengdu, China
  • Sichuan Academy of Environmental Sciences, Chengdu, China
  • 1. REES F., SIMONNOT M.O., MOREL J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci., 65 (1), 149, 2014.
  • 2. ZHANG X., WANG H., HE L., LU K., SARMAH A., LI J., BOLAN N.S., PEI J., HUANG H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. R., 20 (12), 8472, 2013.
  • 3. HOUBEN D., EVRARD L., SONNET P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg., 57 (11), 196, 2013.
  • 4. JIANG T.Y., JIANG J., XU R.K., LI Z. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere, 89 (3), 249, 2012.
  • 5. HOUBEN D., EVRARD L., SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92 (11), 1450, 2013.
  • 6. BASTA N.T., MCGOWEN S.L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut., 127 (1), 73, 2004.
  • 7. LIANG Y., CAO X., ZHAO L., ARELLANO E. Biocharand phosphate-induced immobilization of heavy metals in contaminated soil and water: Implication on simultaneous remediation of contaminated soil and groundwater. Environ. Sci. Pollut. R., 21 (6), 4665, 2014.
  • 8. CAO R.X., MA L.Q., CHEN M., SINGH S.P., HARRIS W.G. Phosphate-induced metal immobilization in a contaminated site. Environ. Pollut., 122 (1), 19, 2003.
  • 9. EL-AZEEM S.A.M.A., AHMAD M., USMAN A.R.A., KIM K.R., OH S.E., SANG S.L., YONG S.O. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials. Environ. Earth. Sci., 70 (7), 3411, 2013.
  • 10. LU K., YANG X., GIELEN G., BOLAN N., OK Y.S., NIAZI N.K., XU S., YUAN G., CHEN X., ZHANG X. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage., 186 (Pt 2), 285, 2017.
  • 11. MIGNARDI S., CORAMI A., FERRINI V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86 (4), 354, 2012.
  • 12. BIAN R., JOSEPH S., CUI L., PAN G., LI L., LIU X., ZHANG A., RUTLIDGE H., WONG S., CHIA C. A threeyear experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J. Hazard. Mater., 272 (4), 121, 2014.
  • 13. AHMAD M., LEE S.S., LIM J.E., LEE S.E., CHO J.S., MOON D.H., HASHIMOTO Y., OK Y.S. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95 (1), 433, 2014.
  • 14. RIZWAN M.S., IMTIAZ M., HUANG G., CHHAJRO M.A., LIU Y., FU Q., ZHU J., ASHRAF M., ZAFAR M., BASHIR, S. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ. Sci. Pollut. R., 23 (15), 15532, 2016.
  • 15. LU K., YANG X., GIELEN G., BOLAN N., OK Y.S., NIAZI N.K., XU S., YUAN G., CHEN X., ZHANG X. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage., 186 (Pt 2), 285, 2017.
  • 16. UCHIMIYA M. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater., 190 (1-3), 432, 2011.
  • 17. LAIRD D., FLEMING P., WANG B., HORTON R., KARLEN D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158 (3), 436, 2010.
  • 18. FALAMAKI A., TAVALLALI H., ESKANDARI M., FARAHMAND S.R. Immobilizing some heavy metals by mixing contaminated soils with phosphate admixtures. Int. J. Civ. Eng., 14 (2), 75, 2016.
  • 19. HUANG G., SU X., RIZWAN M.S., ZHU Y., HU H. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ. Sci. Pollut. R., 23 (16), 1, 2016.
  • 20. CAO X., WAHBI A., MA L., LI B., YANG Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J. Hazard. Mater., 164 (2-3), 555, 2009.
  • 21. ZHU J., CAI Z., SU X., FU Q., LIU Y., HUANG Q., VIOLANTE A., HU H. Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-polyglutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock. Environ. Sci. Pollut. R., 22 (4), 2661, 2015.
  • 22. KILGOUR D.W., MOSELEY R.B., BARNETT M.O., SAVAGE K.S., JARDINE P.M. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. J. Environ. Qual., 37 (5), 1733, 2008.
  • 23. SCHECKEL K.G., RYAN J.A. Spectroscopic speciation and quantification of lead in phosphate-amended soils. J. Environ. Qual., 33 (4), 1288, 2004.
  • 24. YOON J.K., CAO X., MA L.Q. Application methods affect phosphorus-induced lead immobilization from a contaminated soil. J. Environ. Qual., 36 (2), 373, 2007.
  • 25. US Environmental Protection Agency. Test methods for evaluating solid waste : Physical and Chemical Methods. SW-846. 3rd ed., USA. Government Printing Office, 1986.
  • 26. LI Q., GAO Y., LANG J., DING W., YONG Y. Removal of Pb(II) and Cu(II) from aqueous solutions by ultraviolet irradiation-modified biochar. Dasalin. Water. Treat., 82, 179, 2017.
  • 27. RAURET G., LÓPEZSÁNCHEZ J.F., SAHUQUILLO A., RUBIO R., DAVIDSON C., URE A., QUEVAUVILLER P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monitor., 1 (1), 57, 1999.
  • 28. US Environmental Protection Agency. “Toxicity Characteristics Leaching Procedure, Method 1311”. Test methods for evaluating solid waste, SW-846 3rd ed.. USA, Government Printing Office, 1992.
  • 29. BIAN R., CHEN D., LIU X., CUI L., LI L., PAN G., XIE D., ZHENG J., ZHANG X., ZHENG J. Biochar soil amendment as a solution to prevent Cd-tainted rice from China: Results from a cross-site field experiment. Ecol. Eng., 58 (13), 378, 2013.
  • 30. BOLAN N.S., ADRIANO D.C., DURAISAMY P., MANI, A., ARULMOZHISELVAN, K. Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phosphate addition. Plant. Soil, 250 (1), 83, 2003.
  • 31. MOUTA SOARES E.R., CASAGRANDE M.R., JOSÉ C. Copper adsorption as a function of solution parameters of variable charge soils. J. Brazil. Chem. Soc., 19 (5), 69, 2008.
  • 32. LU H.P., LI Z.A., GASCÓ G., MÉNDEZ A., SHEN Y., PAZ-FERREIRO J. Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci. Total Environ., 622-623, 892, 2017.
  • 33. HASHIMOTO Y., TAKAOKA M., OSHITA K., TANIDA H. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy. Chemosphere, 76 (5), 616, 2009.
  • 34. LINDSAY W.L. Chemical equilibria in soils, Wiley: New York, USA, 319, 1979.
  • 35. MA Q.Y., TRAINA S.J., LOGAN T.J., RYAN J.A. Effects of aqueous al, cd, cu, Fe(II), ni, and zn on pb immobilization by hydroxyapatite. Environ. Sci. Technol., 28 (7), 1219, 1994.
  • 36. ZHANG P., RYAN J.A. Transformation of Pb(II) from Cerrusite to Chloropyromorphite in the Presence of Hydroxyapatite under Varying Conditions of pH. Environ. Sci. Technol., 33 (4), 625, 1999.
  • 37. RAICEVIC S., KALUDJEROVIC-RADOICIC, T., ZOUBOULIS, A.I. In situ stabilization of toxic metals in polluted soils using phosphates: Theoretical prediction and experimental verification. J. Hazard. Mater., 117 (1), 41, 2005.
  • 38. XU X., CAO X., ZHAO L. Comparison of rice huskand dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 92 (8), 955, 2013.
  • 39. JIANG J., XU R.K., JIANG T.Y., LI Z. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard. Mater., 229-230 (5), 145, 2012.
  • 40. HU Y., CHEN G., MA W., YAN M., HAN L. Distribution and contamination hazards of heavy metals in solid residues from the pyrolysis and gasification of wastewater sewage sludge. J. Residuals. Sci. Tech., 13 (4), 259, 2016.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.