Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 74 | 04 |
Tytuł artykułu

Centralny zegar biologiczny ptaków

Treść / Zawartość
Warianty tytułu
Avian central clocking system
Języki publikacji
In birds many life processes runs in diurnal (e.g. locomotor activity, feeding, melatonin secretion) and seasonal rhythms (e.g. reproduction, song, feathering, migration) depending on the environmental light and the activity of their central clock system (CCS). The structure and mechanisms of the activity of the avian CCS are the most complex among vertebrates. CCS consists of three oscillators (in the retina, SCN and pineal gland) possessing their own sensory input system (photopigments) and effective output system (products for direct biological effects). So far, 14 forms of photopigments (Opn1, Opn2, Opn3, TMT, Opn4x, Opn4m, Opn5, RGR, RRH, VA-opsins, pinopsin, Cry1, Cry2 i Cry4) and 12 clock genes making up oscillators (Bmal1, Bmal2, Clock, NPas2 called also Mop4 and Rorα – positive genes and Cry1, Cry2, Cry4, Per2, Per3, E4bp4 and Rev-erbα – negative genes) have been described in the CCS in birds. Photopigments are placed in all layers of the retina; in the brain – mainly in regions of nuclei: septalis lateralis, premammillaris, habenularis and paraventricularis; in the pineal gland – in all kinds of pinealocytes. Most photopigments belonging to the opsin family are linked with the nucleotide phototransduction path, typical for vertebrates, but, in avian CCS, also the phosphoinositol phototransduction path, characteristic for invertebrates, exists and concerns Opn4x and Opn5. Oscilators are placed in nuclei of cells of all layers of the retina, in mSCN and vSCN (with great species variability) and in pinealocytes. It is supposed that all nonvisual photopigments have a direct role in the synchronization of the oscillator activity with the environmental light, but molecular the mechanisms of the interaction between photopigments and the oscillator remain unknown. The impact of each of the three oscillators of the CCS in the generation of biological rhythms in birds show great species differentiation. The differences concern both the domination of one of the oscillators over the others and the assignation of biological processes which the individual oscillator synchronizes rhythmically with the environmental light.
Opis fizyczny
  • Katedra Histologii i Embriologii, Wydział Medycyny Weterynaryjnej, Uniwersytet Warmińsko-Mazurski w Olsztynie, ul.Oczapowskiego 13, 10-713 Olsztyn
  • Arendt D.: Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 2003, 47, 563-571.
  • Bailey M. J., Beremand P. D., Hammer R., Bell-Pedersen D., Thomas T. L., Cassone V. M.: Transcriptional profiling of the chick pineal gland, a photoreceptive circadian oscillator and pacemaker. Mol. Endocrinol. 2003, 17, 2084-2095.
  • Bailey M. J., Beremand P. D., Hammer R., Reidel E., Thomas, T. L., Cassone V. M.: Transcriptional profiling of circadian patterns of mRNA expression in the chick retina. J. Biol. Chem. 2004, 279, 52247-52254.
  • Bailey M. J., Cassone V. M.: Melanopsin expression in the chick retina and pineal gland. Brain Res. Mol. Brain Res. 2005, 134, 345-348.
  • Bailey M. J., Cassone V. M.: Opsin photoisomerases in the chicken retina and pineal gland: characterization, localization and circadian regulation. Invest. Opthalmol. Vis. Sci. 2004, 45, 769-775.
  • Beldhuis J. A., Dittami J. P., Gwinner E.: Melatonin and the circadian rhythms of feeding and perch-hopping in the European starling (Sturnus vulgaris). J. Comp. Physiol. A 1988, 164, 7-14.
  • Bellingham J., Chaurasia S. S., Melyan Z., Liu C., Cameron M. A., Tarttelin E. E., Iuvone P. M., Hankins M. W., Tosini G., Lucas R. J.: Evolution of melanopsin photoreceptors: Discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. 2006, 4, e254.
  • Bell-Pedersen D., Cassone V. M., Earnest D. J., Golden S. S., Hardin P. E., Thomas T. L., Zoran M. J.: Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 2005, 6, 544-556.
  • Bernard M., Iuvone P. M., Cassone V. M., Roseboom P. H., Coon S. L., Klein D. C.: Avian melatonin synthesis: photic and circadian regulation of serotonin N-acetyltransferase mRNA in the chicken pineal gland and retina. J. Neurochem. 1997, 68, 213-224.
  • Brandstätter R., Abraham U., Albrecht U.: Initial demonstration of rhythmic Per gene expression in the hypothalamus of a nonmammalian vertebrate, the house sparrow. Neuroreport 2001, 12, 1167-1170.
  • Cantwell E. L., Cassone V. M.: Chicken suprachiasmatic nuclei: I. Efferent and afferent connections. J. Comp. Neurol. 2006, 496, 97-120.
  • Cantwell E. L., Cassone V. M.: Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J. Comp. Neurol. 2006, 499, 442-457.
  • Cao J., Liu W., Wang Z., Xie D., Jia L., Chen Y.: Green and blue monochromatic lights promote growth and development of broilers via stimulating testosterone secretion and myofiber growth, J. Appl. Poult. Res. 2008, 17, 211-218.
  • Cassone V. M.: Avian circadian organization: a chorus of clocks. Front. Neuroendocrinol. 2014, 35, 76-88.
  • Chaurasia S. S., Pozdeyev N., Haque R., Visser A., Ivanova T. N., Iuvone P. M.: Circadian clockwork machinery in neural retina: evidence for the presence of functional clock components in photoreceptor-enriched chick retinal cell cultures. Mol. Vis. 2006, 12, 215-223.
  • Chaurasia S. S., Provencio I., Jiang G., Hayes W. P., Natesan A., Zatz M., Rollag M. D., Iuvone P. M.: Differential circadian regulation of melanopsin mRNA expression in the avian retina and pineal gland. Invest. Ophthalmol. Vis. Sci. 2004, 45, 46-48.
  • Chaurasia S. S., Rollag M. D., Jiang G., Hayes W. P., Haque R., Natesan A., Zatz M., Tosini G., Liu C., Korf H. W., Iuvone P. M., Provencio I.: Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J. Neurochem. 2005, 92, 158-170.
  • Chong N. W., Bernard M., Klein D. C.: Characterization of the chicken serotonin N-acetyltransferase gene activation via clock gene heterodimer/E box interaction. J. Biol. Chem. 2000, 275, 32991-32998.
  • Chong N. W., Chaurasia S. S., Haque R., Klein D. C., Iuvone P. M.: Temporalspatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. J. Neurochem. 2003, 85,851-860.
  • Contin M. A., Verra D. M., Salvador G., Ilincheta M., Giusto N. M., Guido M. E.: Light activation of the phosphoinositide cycle in intrinsically photosensitive chicken retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5491-5495.
  • Csernus V., Faluhelyi N., Nagy A. D.: Features of the circadian clock in the avian pineal gland. Ann. N. Y. Acad. Sci. 2005, 1040, 281-287.
  • Díaz N. M., Morera L. P., Guido M. E.: Melanopsin and the non-visual photochemistry in the inner retina of vertebrates. Photochem. Photobiol. 2016, 92, 29-44.
  • Díaz N. M., Morera L. P., Tempesti T., Guido M. E.: The visual cycle in the inner retina of chicken and the involvement of retinal G-protein-coupled receptor (RGR). Mol. Neurobiol. 2016, Epub ahead of print.
  • Dibner C., Schibler U., Albrecht U.: The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72, 517-549.
  • Ebihara S., Kawamura H.: The role of the pineal organ and the suprachiasmatic nucleus in the control of the circadian rhythms in the Java sparrow, Padda oryzivora. J. Comp. Physiol. 1981, 141, 207-214.
  • Ebihara S., Oshima I., Yamada H., Goto M., Sato K.: Circadian organization in the pigeon, [w:] Hiroshige T., Honma K. (red.): Comparative aspects of circadian clocks. Sapporo: Hokkaido University Press 1987, s. 88-94.
  • Ebihara S., Uchiyama K., Oshima I.: Circadian organization in the pigeon, Columba livia: The role of the pineal organ and the eye. J. Comp. Physiol. 1984, 154, 59-69.
  • Fukada Y., Okano T.: Circadian clock system in the pineal gland. Mol. Neurobiol. 2002, 25, 19-30.
  • García-Fernández J. M., Cernuda-Cernuda R., Davies W. I., Rodgers J., Turton M., Peirson S. N., Follett B. K., Halford S., Hughes S., Hankins M. W., Foster R. G.: The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin. Front Neuroendocrinol. 2015, 37, 13-28.
  • Glossop N. R., Hardin P. E.: Central and peripheral circadian oscillator mechanisms in flies and mammals. J. Cell Sci. 2002, 115, 3369-3377.
  • Guido M. E., Garbarino-Pico E., Contin M. A., Valdez D. J., Nieto P. S., Verra D. M., Acosta-Rodriguez V. A., Zavalia de N., Rosenstein R. E.: Inner retinal circadian clocks and nonvisual photoreceptors: Novel players in the circadian system. Prog. Neurobiol. 2010, 92, 484-504.
  • Gwinner E.: Effects of pinealectomy on circadian locomotor activity rhythms in European starlings (Sturnus vulgaris). J. Comp. Physiol. 1978, 126, 123-129.
  • Gwinner E., Hau M., Heigl S.: Melatonin: Generation and modulation of avian circadian rhythms. Brain Res. Bull. 1997, 44, 439-444.
  • Haque R., Chaurasia S. S., Wessel J. H., Iuvone P. M.: Dual regulation of cryptochrome 1 mRNA expression in chicken retina by light and circadian oscillators. Neuroreport. 2002, 13, 2247-2251.
  • Helfer G., Fidler A. E., Vallone D., Foulkes N. S., Brandstaetter R.: Molecular analysis of clock gene expression in the avian brain. Chronobiol. Int. 2006, 23, 113-127.
  • Herichová I., Monosíková J., Zeman M.: Ontogeny of melatonin, Per2 and E4bp4 light responsiveness in the chicken embryonic pineal gland. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2008, 149, 44-50.
  • Heyers D., Manns M., Luksch H., Güntürkün O., Mouritsen H.: A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLos One 2007, 2, e937.
  • Holthues H., Engel L., Spessert R., Vollrath L.: Circadian gene expression patterns of melanopsin and pinopsin in the chick pineal gland. Biochem. Biophys. Res. Commun. 2005, 326, 160-165.
  • Hore P. J., Mouritsen H.: The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 2016, 45, 299-344.
  • Isoldi M. C., Rollag M. D., de Lauro Castrucci A. M., Provencio I.: Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc. Natl. Acad. Sci. USA 2005, 102, 1217-1221.
  • Ivanova T. N., Iuvone P. M.: Melatonin synthesis in retina: circadian regulation of arylalkylamine N-acetyltransferase activity in cultured photoreceptor cells of embryonic chicken retina. Brain Res. 2003, 973, 56-63.
  • Iwasaki H., Kondo T.: The current state and problems of circadian clock studies in cyanobacteria. Plant Cell Physiol. 2000, 41, 1013-1020.
  • Jiang N., Wang Z., Cao J., Dong Y., Chen Y.: Role of monochromatic light on daily variation of clock gene expression in the pineal gland of chick. J. Photochem. Photobiol. B 2016, 164, 57-64.
  • Jin E., Jia L., Li J., Yang G., Wang Z., Cao J., Chen Y.: Effect of monochromatic light on melatonin secretion and arylalkylamine N-acetyltransferase mRNA expression in the retina and pineal gland of broilers. Anat. Rec. (Hoboken) 2011, 294, 1233-1241.
  • Kang S. W., Kuenzel W. J.: Deep-brain photoreceptors (DBPs) involved in the photoperiodic gonadal response in an avian species, Gallus gallus. Gen. Comp. Endocrinol. 2015, 211, 106-113.
  • Karaganis S. P., Bartell P. A., Shende V. R., Moore A. F., Cassone V. M.: Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators. Gen. Comp. Endocrinol. 2009, 161, 179-192.
  • Kasahara T., Okano T., Haga T., Fukada Y.: Opsin-G11-mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. J. Neurosci. 2002, 22, 7321-7325.
  • Kasahara T., Okano T., Yoshikawa T., Yamazaki K., Fukada Y.: Rod-type transducin alpha-subunit mediates a phototransduction pathway in the chicken pineal gland. J. Neurochem. 2000, 75, 217-224.
  • Kato M., Sugiyama T., Sakai K., Yamashita T., Fujita H., Sato K., Tomonari S., Shichida Y., Ohuchi H.: Two Opsin 3-Related Proteins in the Chicken Retina and Brain: A TMT-Type Opsin 3 Is a Blue-Light Sensor in Retinal Horizontal Cells, Hypothalamus, and Cerebellum. PLoS One 2016, 11, e0163925.
  • King D. P., Takahashi J. S.: Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 2000, 23, 713-742.
  • Kommedal S., Bódis G., Matkovits A., Csernus V., Nagy A. D.: Expression pattern of clock under acute phase-delay of the light/dark cycle in the chicken pineal model. Gen. Comp. Endocrinol. 2011, 172, 170-172.
  • Koyanagi M., Kubokawa K., Tsukamoto H., Shichida Y., Terakita A.: Cephalochordate melanopsin: Evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 2005, 15, 1065-1069.
  • Koyanagi M., Takada E., Nagata T., Tsukamoto H., Terakita A.: Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc. Natl. Acad. Sci. USA 2013, 13, 4998-5003.
  • Kubo Y., Akiyama M., Fukada Y., Okano T.: Molecular cloning, mRNA expression, and immunocytochemical localization of a putative blue-light photoreceptor CRY4 in the chicken pineal gland. J. Neurochem. 2006, 97, 1155-1165.
  • Kumar V.: Avian photoreceptors and their role in the regulation of daily and seasonal physiology. Gen. Comp. Endocrinol. 2015, 220, 13-22.
  • Kumar V., Wingfield J. C., Dawson A., Ramenofsky M., Rani S., Bartell P.: Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol. Biochem. Zool. 2010, 83, 827-835.Lewczuk B.: Siatkówka, jądro skrzyżowania oraz szyszynka jako elementy zegara biologicznego ssaków. Med. Weter. 2007, 63, 506-511.
  • Li J., Cao J., Wang Z., Dong Y., Chen Y.: Melatonin plays a critical role in inducing B lymphocyte proliferation of the bursa of Fabricius in broilers via monochromatic lights. J. Photochem. Photobiol. B Biol. 2015, 142, 29-34.
  • Liu W., Wang Z., Chen Y.: Effects of monochromatic light on developmental changes in satellite cell population of pectoral muscle in broilers during early posthatch period. Anat. Rec. 2010, 293, 1315-1324.
  • MacBride S. E.: Pineal Biochemical Rhythms of the Chicken (Gallus domesticus): Light Cycles and Locomotor Activity Correlates, [w:] Ph. D. Thesis University of Pittsburgh. Pittsburgh, PA 1973.
  • Matsushita A., Yoshikawa T., Okano T., Kasahara T., Fukada Y.: Colocalization of pinopsin with two types of G-protein alpha-subunits in the chicken pineal gland. Cell Tissue Res. 2000, 299, 245-251.
  • Morera L. P., Díaz N. M., Guido M. E.: Horizontal cells expressing melanopsin x are novel photoreceptors in the avian inner retina. Proc. Natl. Acad. Sci. USA 2016, 113, 13215-13220.
  • Mouritsen H., Janssen-Bienhold U., Liedvogel M., Feenders G., Stalleicken J., Dirks P., Weiler R.: Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl. Acad. Sci. USA 2004, 101, 14294-14299.
  • Möller A., Sagasser S., Wiltschko W., Schierwater B.: Retinal cryptochrome in a migratory passerine bird: a possible transducer of the avian magnetic compass. Naturwissenschaften 2004, 91, 585-588.
  • Nakane Y., Ikegami K., Ono H., Yamamoto N., Yoshida S., Hirunagi K., Ebihara S., Kubo Y., Yoshimura T.: A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc. Natl. Acad. Sci. USA 2010, 107, 15264-15268.
  • Natesan A., Geetha L., Zatz M.: Rhythm and soul in the avian pineal. Cell Tissue Res. 2002, 309, 35-45.
  • Okano T., Kojima D., Fukada Y., Shichida Y., Yoshizawa T.: Primary structures of chicken cone visual pigments: Vertebrate rhodopsins have evolved out of cone visual pigments. Proc. Natl. Acad. Sci. USA 1992, 89, 5932-5936.
  • Okano T., Takanaka Y., Nakamura A., Hirunagi K., Adachi A., Ebihara S., Fukada Y.: Immunocytochemical identification of pinopsin in the pineal glands of chicken and pigeon. Brain Res. Mol. Brain Res. 1997, 50, 190-196.
  • Okano T., Yamamoto K., Okano K., Hirota T., Kasahara T., Sasaki M., Takanaka Y., Fukada Y.: Chicken pineal clock genes: implication of BMAL2 as a bidirectional regulator in circadian clock oscillation. Genes Cells 2001, 6, 825-836.
  • Okano T., Yamazaki K., Kasahara T., Fukada Y.: Molecular cloning of heterotrimeric G-protein α-subunits in chicken pineal gland. J. Mol. Evol. 1997, 44, 91-97.
  • Okano T., Yoshizawa T., Fukada Y.: Pinopsin is a chicken pineal photoreceptive molecule. Nature 1994, 372, 94-97.
  • Peirson S. N., Halford S., Foster R. G.: The evolution of irradiance detection: Melanopsin and the non-visual opsins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2849-2865.
  • Piesiewicz A., Kędzierska U., Turkowska E., Adamska I., Majewski P. M.: Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland. Chronobiol. Int. 2015, 32, 59-70.
  • Prusik M., Lewczuk B.: Budowa szyszynki ptaków. Med. Weter. 2008, 64, 764-769.
  • Prusik M., Lewczuk B.: Regulacja sekrecji melatoniny w szyszynce ptaków. Med. Weter. 2008, 64, 639-645.
  • Prusik M., Lewczuk B., Nowicki M., Przybylska-Gornowicz B.: Histology and ultrastructure of the pineal gland of the domestic goose. Histol. Histopathol. 2006, 21, 1075-1090.
  • Przybylska-Gornowicz B., Lewczuk B., Prusik M., Kalicki M., Ziółkowska N.: Morphological studies of the pineal gland in the common gull (Larus canus) reveal uncommon features of pinealocytes. Anat. Rec. (Hoboken) 2012, 295, 673-685.
  • Przybylska-Gornowicz B., Lewczuk B., Prusik M., Nowicki M.: Post-hatching development of the turkey pineal organ: histological and immunohistochemical studies. Neuroendocrinol. Lett. 2005, 26, 383-392.
  • Qiu X., Kumbalasiri T., Carlson S. M., Wong K. Y., Krishna V., Provencio I., Berson D. M.: Induction of photosensitivity by heterologous expression of melanopsin. Nature 2005, 433, 745-749.
  • Simpson S. M., Follett B. K.: Pineal and hypothalamic pacemakers: their role in regulating circadian rhythmicity in Japanese quail. J. Comp. Physiol. 1981, 141, 381-389.
  • Stevens R. G., Zhu Y.: Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 1667.
  • Takahashi J. S., Menaker M.: Role of suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J. Neurosci. 1982, 2, 815-828.
  • Takanaka Y., Okano T., Iigo M., Fukada Y.: Light-dependent expression of pinopsin gene in chicken pineal gland. J. Neurochem. 1998, 70, 908-913.
  • Tomonari S., Takagi A., Akamatsu S., Noji S., Ohuchi H.: A non-canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina. Dev. Dyn. 2005, 234, 783-790.
  • Tomonari S., Takagi A., Noji S., Ohuchi H.: Expression pattern of the melanopsin-like (cOpn4m) and VA opsin-like genes in the developing chicken retina and neural tissues. Gene Expr. Patterns 2007, 7, 746-753.
  • Torii M., Kojima D., Nishimura A., Itoh H., Fukada Y.: Light-dependent activation of G proteins by two isoforms of chicken melanopsins. Photochem. Photobiol. Sci. 2015, 14, 1991-1997.
  • Trivedi A. K., Malik S., Rani S., Kumar V.: Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird. Physiol. Behav. 2016, 156, 156-163.
  • Turek F. W., McMillan J. P., Menaker M.: Melatonin: effects on the circadian locomotor rhythm of sparrows. Science 1976, 194, 1441-1443.
  • Turkowska E., Majewski P. M., Rai S., Skwarło-Sońta K.: Pineal oscillator functioning in the chicken – effect of photoperiod and melatonin. Chronobiol. Int. 2014, 31, 134-143.
  • Underwood H., Steele C. T., Zivkovic B.: Circadian organization and the role of the pineal in birds. Microsc. Res. Tech. 2001, 53, 48-62.
  • Valdez D. J., Nieto P. S., Garbarino-Pico E., Avalle L. B., Díaz-Fajreldines H., Schurrer C., Cheng K. M., Guido M. E.: A nonmammalian vertebrate model of blindness reveals functional photoreceptors in the inner retina. FASEB J. 2009, 23, 1186-1195.
  • Verra D. M., Contin M. A., Hicks D., Guido M. E.: Early onset and differential temporospatial expression of melanopsin isoforms in the developing chicken retina. Invest. Ophthalmol. Vis. Sci. 2011, 52, 5111-5120.
  • Yamamoto K., Okano T., Fukada Y.: Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts. Neurosci. Lett. 2001, 13, 13-16.
  • Yamashita T., Ohuchi H., Tomonari S., Ikeda K., Sakai K., Shichida Y.: Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc. Natl. Acad. Sci. USA 2010, 107, 22084-22089.
  • Yamazaki S., Numano R., Abe M., Hida A., Takahashi R., Ueda M., Block G. D., Sakaki Y., Menaker M., Tei H.: Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000, 288, 682-685.
  • Yasuo S., Watanabe M., Okabayashi N., Ebihara S., Yoshimura T.: Circadian clock genes and photoperiodism: Comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules. Endocrinology 2003, 144, 3742-3748.
  • Yin L., Wu N., Lazar M. A.: Nuclear receptor rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl. Recept. Signal. 2010, 8, e001.
  • Yoshimura T., Suzuki Y., Makino E., Suzuki T., Kuroiwa A., Matsuda Y., Namikawa T., Ebihara S.: Molecular analysis of avian circadian clock genes. Mol. Brain Res. 2000, 78, 207-215.
  • Yoshimura T., Yasuo S., Suzuki Y., Makino E., Yokota Y., Ebihara S.: Identification of the suprachiasmatic nucleus in birds. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, 1185-1189.
  • Young M. W.: Life’s 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem. Sci. 2000, 25, 601-606.
  • Zatz M., Mullen D. A.: Norepinephrine, acting via adenylate cyclase, inhibits melatonin output but does not phase-shift the pacemaker in cultured chick pineal cells. Brain Res. 1988, 450, 137-143.
  • Zawilska J. B., Lorenc A., Berezińska M., Vivien-Roels B., Pévet P., Skene D. J.: Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. Gen. Comp. Endocrinol. 2006, 145, 162-168.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.