PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 4 |

Tytuł artykułu

Analysis and aplication of RD29 genes in abiotic stress response

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Abiotic stresses adversely affect the growth and productivity of plants and give rise to a series of morphological, physiological, biochemical and molecular changes. Molecular studies have shown that a number of genes with various functions are induced by abiotic stress. The RD29 (Responsive to Desiccation) genes RD29A and RD29B are such genes induced by desiccation, cold and high salt stresses. The genes encode hydrophilic proteins and endow plants with tolerance to these stresses. Two cisacting elements, ABRE (ABA-responsive element) and DRE (dehydration-responsive element), are present, albeit in different numbers, in the promoter regions of the RD29 genes. Transcription factors, such as AREBs (ABAresponsive element-binding proteins) and DREBs (DREbinding proteins), regulate the expression of RD29 genes through binding to ABRE and DRE, respectively. Therefore, the expression of RD29 genes can be divided into ABA-independent and ABA-dependent signal transduction pathways. RD29 sequences are used as markers to monitor stress-response pathways in plants. Furthermore, the RD29A promoter has been used widely in genetic engineering to improve plant adaptability to adverse environments. In addition, the chimeric gene consisting of the firefly luciferase (LUC) marker driven by the RD29A promoter is a powerful tool used to study stress signaling pathways and for reverse genetic analyses. In this review, the structures, expression and regulation patterns, and application in genetic engineering of RD29A and RD29B are introduced in detail.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

4

Opis fizyczny

p.1239-1250,fig.,ref.

Twórcy

autor
  • Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Soutern Tianshui Road, 730000 Lanzhou, China
autor
  • Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Soutern Tianshui Road, 730000 Lanzhou, China
autor
  • Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Soutern Tianshui Road, 730000 Lanzhou, China
autor
  • Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Soutern Tianshui Road, 730000 Lanzhou, China
autor
  • Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Soutern Tianshui Road, 730000 Lanzhou, China

Bibliografia

  • Alzwiy IA, Morris PC (2007) A mutation in the Arabidopsis MAP kinase kinase 9 gene results in enhanced seedling stress tolerance. Plant Sci 173(3):302–308. doi:10.1016/j.plantsci. 2007.06.007
  • Bajaj S, Targolli J, Liu L-F, Ho T-HD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5(6):493–503
  • Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe KN (2007) Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep 26(8):1275–1282. doi:10.1007/s00299-007-0360-5
  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stressinducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under waterlimiting conditions. Plant Cell Rep 26:2071–2082. doi:10.1007/s00299-007-0406-8
  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27(3):411–424. doi:10.1007/s00299-007-0474-9
  • Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2008) Cold-induced modulation and functional analyses of the DREbinding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot 60:121–135
  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15(8):1833–1845. doi:10.1105/tpc.012393
  • Cheong YH, Sung SJ, Kim B-G, Pandey GK, Cho J-S, Kim K-N, Luan S (2010) Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29:159–165
  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126(1):52–61. doi:10.1111/j.1399-3054.2005.00596.x
  • Choi H-i, Hong J-h, Ha J-o, Kang J-y, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275(3):1723–1730. doi:10.1074/jbc.275.3.1723
  • Ding ZH, Li SM, An XL, Liu XJ, Qin HM, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36(1):17–29
  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33(4):751–763
  • Espelund M, Saeboelarssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992) Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic-acid and osmotic-stress. Plant J 2(2):241–252
  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(suppl 1):S15–S45. doi:10.1105/tpc.010441
  • Gong Z, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, David L, Zhu J-K (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111(6): 803–814. doi:10.1016/s0092-8674(02)01133-9
  • Guiltinan M, Marcotte W, Quatrano R (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250(4978):267–271. doi:10.1126/science.2145628
  • He X-J, Hsu Y-F, Zhu S, Liu H-L, Pontes O, Zhu J, Cui X, Wang C-S, Zhu J-K (2009) A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes Dev 23(23):2717–2722. doi:10.1101/gad.1851809
  • Hong B, Tong Z, Ma N, Li JK, Kasuga M, Yamaguchi-Shinozaki K, Gao JP (2006) Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China C Life Sci 49(5):436–445. doi:10.1007/s11427-006-2014-1
  • Horvath DP, McLarney BK, Thomashow MF (1993) Regulation of Arabidopsis thaliana L (Heyn) Cor78 in response to lowtemperature. Plant Physiol 103(4):1047–1053
  • Hua ZM, Yang XC, Fromm ME (2006) Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins . Plant Cell Environ 29(9):1761–1770. doi:10.1111/j.1365-3040.2006. 01552.x (retracted article. see vol 29, pg 2253, 2006)
  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9(11):1935–1949. doi:10.1105/tpc.9.11.1935
  • Ishitani M, Xiong LM, Lee HJ, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10(7):1151–1161
  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106
  • Jiang C-J, Aono M, Tamaoki M, Maeda S, Sugano S, Mori M, Takatsuji H (2008) SAZ, a new SUPERMAN-like protein, negatively regulates a subset of ABA-responsive genes in Arabidopsis. Mol Genet Genomics 279(2):183–192
  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2009a) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Organ Cult 100:219–227
  • Jin XF, Xiong A-S, Peng R-H, Liu J-G, Gao F, Chen J-M, Yao Q-H (2009b) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB reports:34–39
  • Kang J-y, Choi H-i, Im M-y, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357
  • Kapoor A, Agius F, Zhu J-K (2005) Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett 579(26): 5889–5898. doi:10.1016/j.febslet.2005.08.039
  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291
  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stressinducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350
  • Kim J, Kim HY (2006) Molecular characterization of a bHLH transcription factor involved in Arabidopsis abscisic acidmediated response. Biochim Biophys Acta-Gene Struct Expr 1759(3–4):191–194. doi:10.1016/j.bbaexp.2006.03.002
  • Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15(2):411–423. doi:10.1105/tpc.006858
  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267. doi:10.1016/s1360-1385(01)01946-x
  • Koiwa H, Barb AW, Xiong LM, Li F, McCully MG, Lee BH, Sokolchik I, Zhu JH, Gong ZZ, Reddy M, Sharkhuu A, Manabe Y, Yokoi S, Zhu JK, Bressan RA, Hasegawa PM (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Nat Acad Sci USA 99(16):10893–10898. doi:10.1073/pnas.112276199
  • Koiwa H, Bressan RA, Hasegawa PM (2006) Identification of plant stress-responsive determinants in Arabidopsis by large-scale forward genetic screens. J Exp Bot 57(5):1119–1128. doi:10.1093/jxb/erj093
  • Lee H, Guo Y, Ohta M, Xiong LM, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21(11): 2692–2702
  • Lee YP, Fleming AJ, Korner C, Meins F (2008) Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure. Plant Biol 11(3):273–283. doi:10.1111/j.1438-8677.2008.00122.x
  • Li YJ, Hai RL, Du XH, Jiang XN, Lu H (2009) Over-expression of a Populus peroxisomal ascorbate peroxidase (PpAPX) gene in tobacco plants enhances stress tolerance. Plant Breed 128(4): 404–410. doi:10.1111/j.1439-0523.2008.01593.x
  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively in Arabidopsis. Plant Cell 10(8):1391–1406. doi:10.1105/tpc.10.8.1391
  • Liu Q, Zhao N, Yamaguch-Shinozaki K, Shinozaki K (2000) Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull 45(11):970–975
  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158. doi:10.1016/j.abb.2005.10.018
  • Miranda JA, Avonce N, Suárez R, Thevelein JM, Dijck PV, Iturriaga G (2007) A bifunctional TPS–TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421
  • Msanne J, Lin J, Stone JM, Awada T (2011) Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta. doi:10.1007/s00425-011-1387-y
  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126(1):62–71. doi:10.1111/j.1399-3054.2005.00592.x
  • Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42(4):657–665
  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60(1):51–68
  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88–95. doi:10.1104/pp.108.129791
  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2): 137–148
  • Nordin KVT, Palva ET (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. Feb 21(4):641–653
  • Pellegrineschi A, Reynolds M, Pacheco M, Brito R, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500
  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50(1):54–69. doi:10.1111/j.1365-313X.2007.03034.x
  • Quist TM, Sokolchik I, Shi HZ, Joly RJ, Bressan RA, Maggio A, Narsimhan M, Li X (2009) HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. Mol Plant 2(1):138–151. doi:10.1093/mp/ssn085
  • Rai M, He C, Wu R (2009) Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res 18(5):787–799. doi::10.1007/s11248-009-9263-2
  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant, Cell Environ 25(2):141–151
  • Rekarte-Cowie I, Ebshish OS, Mohamed KS, Pearce RS (2008) Sucrose helps regulate cold acclimation of Arabidopsis thaliana. J Exp Bot 59(15):4205–4217. doi:10.1093/jxb/ern262
  • Riera M, Valon C, Fenzi F, Giraudat J, Leung J (2005) The genetics of adaptive responses to drought stress: abscisic acid-dependent and abscisic acid-independent signalling components. Physiol Plant 123(2):111–119. doi:10.1111/j.1399-3054.2005.00469.x
  • Roy SD, Saxena M, Bhomkar PS, Pooggin M, Hohn T, Bhalla-Sarin N (2008) Generation of marker-free salt tolerant transgenic plants of Arabidopsis thaliana using the gly I gene and cre gene under inducible promoters. Plant Cell, Tissue Organ Cult 95(1):1–11. doi:10.1007/s11240-008-9402-0
  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in droughtresponsive gene expression. Plant Cell 18(5):1292–1309. doi:10.1105/tpc.105.035881
  • Sasaki Y, Takahashi K, Oono Y, Seki M, Yoshida R, Shinozaki K, Uemura M (2008) Characterization of growth-phase-specific responses to cold in Arabidopsis thaliana suspension-cultured cells. Plant, Cell Environ 31(3):354–365. doi:10.1111/j.1365-3040.2007.01767.x
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292
  • Shen Q, Ho T (1995) Functional dissection of an abscisic acid (ABA)- inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7(3):295–307. doi:10.1105/tpc.7.3.295
  • Shen Q, Zhang P, Ho T (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8(7):1107–1119. doi:10.1105/tpc.8.7.1107
  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115(2):327–334. doi:10.1104/pp.115.2.327
  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223. doi:10.1016/s1369-5266(00)80068-0
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417. doi:10.1016/s1369-5266(03)00092-x
  • Skriver K, Olsen FL, Rogers JC, Mundy J (1991) cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Nat Acad Sci 88(16):7266–7270
  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Nat Acad Sci 94(3): 1035–1040
  • Suárez R, Calderón C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci, 49:1791–1799
  • Taji T, Seki M, Yamaguchi-Shinozaki K, Kamada H, Giraudat J, Shinozaki K (1999) Mapping of 25 drought-inducible genes, RD and ERD, in Arabidopsis thaliana. Plant Cell Physiol 40(1): 119–123
  • Takagi T, Nakamura M, Hayashi H, Inatsugi R, Yano R, Nishida I (2003) The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. Plant Cell Physiol 44(9):922–931
  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the cbf cold response pathway. Plant Physiol 154(2):571–577. doi:10.1104/pp.110.161794
  • Thomashow M, Stockinger E, Jaglo-Ottosen K, Gilmour S, Zarka D (1997) Function and regulation of Arabidopsis thaliana COR (cold-regulated) genes. Acta Physiologiae Plantarum 19(4):497–504
  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19(5):1580–1589. doi:10.1105/tpc.107.050104
  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94(10):791–812. doi:10.1007/s00114-007-0254-y
  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Nat Acad Sci USA 97(21):11632–11637
  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drough tolerance and yield protection.Plant J 43:413–424
  • Winicov I, Bastola D (1997) Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiologiae Plantarum 19(4):435–449
  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant, Cell Environ 29(7):1410–1421. doi: 10.1111/j.1365-3040.2006.01524.x
  • Xiong L, David L, Stevenson B, Zhu J-K (1999) High throughput screening of signal transduction mutants with luciferase imaging. Plant Mol Biol Report 17(2):159–170
  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257. doi:10.1104/pp.110.1.249
  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236(2):331–340
  • Yamaguchi-shinozaki K, Shinozaki K (1994) A novel Cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6(2): 251–264
  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10(2):88–94. doi:10.1016/ j.tplanys.2004.12.012
  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Plant Biol 57(1):781
  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular-cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33(3):217–224
  • Yang L, Ji W, Zhu Y, Gao P, Li Y, Cai H, Bai X, Guo D (2010) GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61(9):2519–2533. doi:10.1093/jxb/erq084
  • Zhao JS, Ren W, Zhi DY, Wang L, Xia GM (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26(9):1521–1528. doi: 10.1007/s00299-007-0362-3
  • Zheng Z, Xing Y, He X-J, Li W, Hu Y, Yadav SK, Oh J, Zhu J-K (2010) An SGS3-like protein functions in RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis. Plant J 62(1):92–99
  • Zhu J-K (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43(1):143–166. doi:10.1146/annurev-genet-102108-134205
  • Zhu JH, Verslues PE, Zheng XW, Lee B, Zhan XQ, Manabe Y, Sokolchik I, Zhu YM, Dong CH, Zhu JK, Hasegawa PM, Bressan RA (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Nat Acad Sci USA 102(28):9966–9971. doi:10.1073/pnas.0503960102
  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f47f3e3c-8113-42d9-b09f-8b2f47bbc1ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.