PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 2 |

Tytuł artykułu

Advances in athlete genomics in 2019

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A literature search revealed that more than 120 genetic markers seemed to be linked to athletic performance. Among them endurance markers: ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482 and most widely studied ACE I; power/ strength markers: ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala and most widely studied ACE D can be taken into consideration as showing positive associations with athlete status. However the genetic architecture of athletic performance seemed to be still the most important challenge and necessary step to full understanding of the background of talent identification both in sport as in dance and other related abilities associated with body movement. On the other hand, the significance of some genetic markers has not been replicated in more than one study.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

p.55-61,ref.

Twórcy

autor
  • Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
autor
  • Department of Physical Education and Sport, Faculty of Education, Jan Evangelista Purkyne University in Usti nad Labem, Usti nad Labem, Czech Republic
autor
  • Department of Physical Education and Sport, Faculty of Education, Jan Evangelista Purkyne University in Usti nad Labem, Usti nad Labem, Czech Republic

Bibliografia

  • 1. Ahmetov II, Fedotovskaya ON. Current progress in sports genomics. Adv Clin Chem. 2015; 70: 247-314.
  • 2. Ahmetov II, Mozhayskaya IA, Lyubaeva EV, Vinogradova OL, Rogozkin VA. PPARG gene polymorphism and locomotor activity in humans. Bull Exp Biol Med. 2008; 146: 630-632.
  • 3. Ahmetov II, Rogozkin VA. Genes, athlete status and training – an overview. Med Sport Sci. 2009; 54: 43-71.
  • 4. Ben-Zaken S, Meckel Y, Nemet D, Eliakim A. IGF-I receptor 275124A>C (rs1464430) polymorphism and athletic performance. J Sci Med Sport. 2015; 18: 323-327.
  • 5. Bray CMS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, et al. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc. 2009; 41: 34-72.
  • 6. Buemann B, Schierning B, Toubro S, Bibby BM, Sørensen T, Dalgaard L, et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord. 2001; 25: 467-471.
  • 7. De Moor MHM, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet. 2007; 10: 812-820.
  • 8. Doring F, Onur S, Fischer A, Boulay MR, Pérusse L, Rankinen T, et al. A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha (HIF1A) gene in elite endurance athletes. J Appl Physiol. 2010; 108: 1497-1500.
  • 9. Drozdovska SB, Dosenko VE, Ahmetov II, Ilyin VN. The association of gene polymorphisms with athlete status in Ukrainians. Biol Sport. 2013; 30: 163-167.
  • 10. Eynon MN, Nasibulina ES, Banting LK, Cieszczyk P, Maciejewska-Karlowska A, Sawczuk M, et al. The FTO A/T polymorphism and elite athletic performance: a study involving three groups of European athletes. PLoS One. 2013; 8: e60570.
  • 11. Fischer H, Esbjornsson M, Sabina RL, Stromberg A, Peyrard-Janvid M, Norman B. AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J Appl Physiol. 2007; 103: 315-322.
  • 12. Gayagay G, Yu B, Hambly B, Boston T, Hahn A, Celermajer DS, et al. Elite endurance athletes and the ACE I allele-the role of genes in athletic performance. Hum Genet. 1998; 103: 48-50.
  • 13. Gronek P, Holdys J. Genes and physical fitness. Trends Sport Sci. 2013; 1(20): 16-29.
  • 14. Hopkinson NS, Ka WL, Kehoe A, Humphries SE, Roughton M, Moxham J, et al. Vitamin D receptor genotypes influence quadriceps strength in chronic obstructive pulmonary disease. Am J Clin Nutr. 2008; 87: 385-390.
  • 15. Hughes DC, Day SH, Ahmetov II, Williams AG. Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J Sports Sci. 2011; 29: 1425-1434.
  • 16. Jamshidi Y, Montgomery HE, Hense HW, Myerson SG, Torra IP, Staels B, et al. Peroxisome proliferator-activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation. 2002; 105: 950-955.
  • 17. Jelakovic B, Kuzmanic D, Milicic D. Influence of angiotensin converting enzyme (ACE) gene polymorphism and circadian blood pressure (BP) changes on left ventricle (LV) mass in competitive oarsmen. Am J Hypertens. 2000; 13: 182A.
  • 18. Koutedakis Y, Jamurtas A. The dancer as a performing athlete: physiological considerations. Sports Med. 2004; 34: 651-661.
  • 19. Martínez JL, Carrión A, Florián ME, Martín JA, LópezTaylor JR, Fahey TD, et al. Aquaporin-1 gene DNA variation predicts performance in Hispanic marathon runners. Med Sport. 2009; 13: 251-255.
  • 20. Montgomery CHE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al. Human gene for physical performance. Nature. 1998; 393: 221-222.
  • 21. Mustafina LJ, Naumov VA, Cieszczyk P, Popov DV, Lyubaeva EV, Kostryukova ES, et al. AGTR2 gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Exp Physiol. 2014; 99: 1042-1052.
  • 22. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol. 1999; 87: 1313-1316.
  • 23. Pedersen BK. Special feature for the Olympics: effects of exercise on the immune system: exercise and cytokines. Immunol Cell Biol. 2000; 78: 532-535.
  • 24. Posthumus M, Schwellnus MP, Collins M. The COL5A1 gene: a novel marker of endurance running performance. Med Sci Sports Exerc. 2011; 43: 584-589.
  • 25. Prior SJ, Hagberg JM, Phares DA, Brown MD, Fairfull L, Ferrell RE, et al. Sequence variation in hypoxia-inducible factor 1alpha (HIF1A): association with maximal oxygen consumption. Physiol Genomics. 2003; 15: 20-26.
  • 26. Rico-Sanz J, Rankinen T, Joanisse DR, Leon AS, Skinner JS, Wilmore JH, et al. Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol Genomics. 2003; 14: 161-166.
  • 27. Rivera MA, Dionne FT, Simoneau JA, Pérusse L, Chagnon M, Chagnon Y, et al. Muscle-specific creatine kinase gene polymorphism and VO₂ max in the HERITAGE Family Study. Med Sci Sports Exerc. 1997; 29: 1311-1317.
  • 28. Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol. 2010; 721219.
  • 29. van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, Ter Laak H, et al. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell. 1993; 74: 621-631.
  • 30. Vänttinen M, Nuutila P, Pihlajamäki J, Hällsten K, Virtanen KA, Lautamäki R, et al. The effect of the Ala12 allele of the peroxisome proliferator-activated receptor-γ2 gene on skeletal muscle glucose uptake depends on obesity: a positron emission tomography study. J Clin Endocrinol Metab. 2005; 90: 4249-4254.
  • 31. Wang X-Y, Zhang C-L, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004; 2: e294.
  • 32. Williams AG, Dhamrait SS, Wootton PTE, Day SH, Hawe E, Payne JR, et al. Bradykinin receptor gene variant and human physical performance. J Appl Physiol. 2004; 96: 938-942.
  • 33. Wolfarth RB, Rankinen T, Muhlbauer S, Scherr J, Boulay MR, Pérusse L, et al. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metabolism. 2007; 56: 1649-1651.
  • 34. Zatorre R, McGill J. Music, the food of neuroscience? Nature. 2005; 434: 312-315.
  • 35. Zhang B, Tanaka H, Shono N, Miura S, Kiyonaga A, Shindo M, et al. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet. 2003; 63: 139-144.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f4278d66-224f-4fcd-92a6-2d74d9739183
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.