PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 2 |

Tytuł artykułu

Plant pigments: the many faces of light perception

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Good reviews have been published over the years regarding many aspects of plant response to light, such as important advances in understanding the molecular mechanisms of light perception, signaling and control of gene expression by the photoreceptors. Moreover, many efforts have been undertaken on the manipulation of these mechanisms to improve horticultural crop production. In this paper we present an overview about the photoreceptors, the relationship between their absorptive and reflective properties and their control of plant development as well perspectives focused on photomorphogenesis manipulation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

2

Opis fizyczny

p.241-248,fig.,ref.

Twórcy

  • Departamento de Genetica, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de Sao Paulo, Piracicaba, SP CEP 13418-900, Brazil
autor
  • Departamento de Botanica, Instituto de Biociencias, UNESP, Rio Claro, SP CEP 13506-900, Brazil
  • Departamento de Genetica, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de Sao Paulo, Piracicaba, SP CEP 13418-900, Brazil

Bibliografia

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a B-light photoreceptor. Nature 366:162–166
  • Ahmad M, Grancher N, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiol 129:774–785
  • Alba RC, Valenzano J, Kays SJ, Cordonnier-Pratt M-M, Pratt LH (1999) Genetic manipulation of phytochromes in tomato (Lycopersicon esculentum Mill.): a novel approach to crop improvement. Acta Hortic 487:93–98
  • Aphalo PJ (2001) Light signals and the growth and development of plants—a gentle introduction. The plant photobiology notes, no. 1. Faculty of Forestry, University of Joensuu, 34 pp
  • Appenroth KJ, Lenk G, Goldau L, Sharma R (2006) Tomato seed germination: regulation of different response modes by phytochrome B2 and phytochrome A. Plant Cell Environ 29:701–709
  • Arruda MAZ, Azevedo RA (2009) Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Ann Appl Biol 155:301–307
  • Banerjee R, Batschauer A (2005) Plant B light receptors. Planta 220:498–502
  • Boccalandro HE, Ploschuk EL, Yanovsky MJ, Sánchez RA, Gatz C, Casal JJ (2003) Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol 133:1539–1546
  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol 150:1083–1092
  • Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome B light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391
  • Briggs WR (2006) B/UV-A receptors: historical overview. In: Schäfer E, Nagy F (eds) Photomorphogenesis in plants and bacteria: function and signal transduction mechanisms, 3rd edn. Springer, Dorcrecht, pp 171–197
  • Calvenzani V, Martinelli M, Lazzeri V, Giuntini D, Dall’Asta C, Galaverna G, Tonelli C, Ranieri A, Petroni K (2010) Response of wild-type and high pigment-1 tomato fruit to UV-B depletion: flavonoid profiling and gene expression. Planta 231:755–765
  • Carvalho RF, Quecini V, Peres LEP (2010) Hormonal modulation of photomorphogenesis-controlled anthocyanin accumulation in tomato (Solanum lycopersicum L. cv Micro-Tom) hypocotyls: physiological and genetic studies. Plant Sci 178:254–258
  • Casal JJ, Sanchez RA, Deregibus VA (1986) The effect of plant density on tillering: the involvement of red–far-red ratio and the proportion of radiation intercepted per plant. Environ Exp Bot 26:365–372
  • Cazetta E, Schaefer HM, Galetti M (2007) Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol Ecol 23:233–244
  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117
  • Cunningham FX (2002) Regulation of carotenoid synthesis and accumulation in plants. Pure Appl Chem 74:1409–1417
  • de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–486
  • Devlin PF, Christie JM, Terry MJ (2007) Many hands make light work. J Exp Bot 58:3071–3077
  • Dorn LA, Hammond Pyle E, Schmitt J (2000) Plasticity to cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution 54:1982–1994
  • El-Assal SE, Alonso-Blanco C, Peeters AJM, Wagemaker CW, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in the control of flowering in Arabidopsis. Plant Physiol 133:1504–1516
  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391
  • Finlayson SA, Krishnareddy SR, Kebrom TH, Casal JJ (2010) Phytochrome regulation of branching in Arabidopsis. Plant Physiol 152:1914–1927
  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot 96:169–175
  • Galland P (2001) Phototropism in Phycomyces. In: Häder DP, Lebert M (eds) Photomovement. comprehensive series in photosciences, vol 1. Elsevier, Amsterdam, pp 621–657
  • Garg AK, Sawers RJ, Wang H, Kim JK, Walker JM, Brutnell TP, Parthasarathy MV, Vierstra RD, Wu RJ (2006) Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta 223:627–636
  • Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser P, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the B light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time and fruit antioxidant content. Plant Physiol 137:199–208
  • Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 5:314–320
  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494
  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333
  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780
  • Haliapas S, Yupsanis TA, Syros TD, Kofidis G, Economou AS (2008) Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol Plant 30:807–815
  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signaling networks. New Phytol 157:449–463
  • Hoch WA, Zeldin EL, McCown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21:1–8
  • Jackson JA, Jenkins GI (1995) Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta 197:233–239
  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230
  • Josse EM, Halliday KJ (2007) Photoreceptor interactions with other signals. In: Whitelam GC, Halliday KJ (eds) Light and plant development. Annual Plant Reviews, vol 30. Blackwell, Oxford, 325 pp
  • Kasperbauer MJ, Loughrin JH (2004) Butterbean seed yield, color, and protein content are affected by photomorphogenesis. Crop Sci 44:2123–2126
  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117
  • Kevei E, Gyula P, Hall A, Kozma-Bognar L, Kim WY, Eriksson ME, Toth R, Hanano S, Feher B, Southern MM (2006) Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE. Plant Physiol 140:933–945
  • Kim WY, Hicks KA, Somers DE (2005a) Independent roles for early FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139:1557–1569
  • Kim GT, Yano S, Kozuka T, Tsukaya H (2005b) Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:770–774
  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates UV-B signal transduction and tolerance and contains sequence similarity to human Regulator of Chromatin Condensation 1. Plant Physiol 130:234–243
  • Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo H, Chen L, Levin I (2007) Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. Plant Physiol 145:389–401
  • Konczak I, Zhang W (2004) Anthocyanins—more than nature’s colours. J Biomed Biotech 2004:239–240
  • Koornneef M, Rolf E, Spruit CJP (1980) Genetic control of lightinhibited hypocotyl elongation in Arabidopsis thaliana. Z Pflanzenphysiol 100:147–160
  • Koornneef M, Cone JW, Dekens RG, O’Herne-Robers EG, Spruit CJP, Kendrick RE (1985) Photomorphogenic response of longhypocotyl mutants of tomato. J Plant Physiol 120:153–165
  • Kurepin LV, Walton LJ, Reid DM (2007) Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. J Plant Growth Regul 51:53–61
  • Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet 106:454–460
  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260
  • Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108:1574–1581
  • Liscum E, Stowe-Evans EL (2000) Phototropism: a ‘simple’ physiological response modulated by multiple interacting photosensory-response pathways. Photochem Photobiol 72:273–282
  • Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897–9902
  • Mazzella MA, Alconada Magliano TM, Casal JJ (1997) Dual effect of phytochrome A on hypocotyl growth under continuous red light. Plant Cell Environ 20:261–267
  • Mockler T, Yang H, Yu X, Parikh D, Cheng YC, Dolan S, Lin C (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc Natl Acad Sci USA 100:2140–2145
  • Möglich A, Yang X, Ayers RA, Moffat K(2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:6.1–6.27
  • Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci USA 106:4935–4940
  • Muleo R, Morini S (2008) Physiological dissection of blue and red light regulation of apical dominance and branching in M9 apple rootstock growing in vitro. J Plant Physiol 165:1838–1846
  • Neff MM, Street IH, Turk EM, Ward JM (2006) Interaction of light and hormone signalling to mediate photomorphogenesis. In: Schäfer FN (ed) Photomorphogenesis in plants and bacteria, 3rd edn. Springer, Dordrecht, pp 439–473
  • Quail PH (2007) Phytochrome-regulated gene expression. J Integr Plant Biol 49:11–20
  • Rajapakse NC, Shahak Y (2007) Light quality manipulation by horticulture industry. In: Whitelam G, Halliday K (eds) Light and plant development. Blackwell, UK, pp 290–312
  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: B light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974
  • Schittenhelm S, Menge-Hartmann U, Oldenburg E (2004) Photosynthesis, carbohydrate metabolism, and yield of phytochrome-Boverexpressing potatoes under different light regimes. Crop Sci 44:131–143
  • Schmitt J, Stinchcombe JR, Heschel MS, Huber H (2003) The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses. Integr Comp Biol 43:459–469
  • Schultz TF (2005) The ZEITLUPE family of putative photoreceptors. In: Briggs WR, Spudich JL (eds) Handbook of photosensory photoreceptors. Wiley, Weinheim, pp 337–347
  • Schwinn KE, Davies KM (2004) Flavonoids. In: Davies K (ed) Plant pigments and their manipulation. Blackwell, Oxford, pp 92–149
  • Shahak Y, Gussakovsky EE, Gal E, Ganelevin R (2004) ColorNets: crop protection and light-quality manipulation in one technology. Acta Hortic 659:143–151
  • Shen H, Luong P, Huq E (2007) The F-Box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiol 145:1471–1483
  • Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E (2008) Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Plant Cell 20:1586–1602
  • Shin KS, Murthy HN, Heo JH, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339–343
  • Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee C-H, Lee D, Choi G (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci USA 106:7660–7665
  • Somers DE, Kim WY, Geng R (2004) The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 16:769–782
  • Spalding EP, Folta KM (2005) Illuminating topics in plant photobiology. Plant Cell Environ 28:39–53
  • Suetsugu N, Wada M (2003) Cryptochrome B-light photoreceptors. Curr Opin Plant Biol 6:91–96
  • Sullivan JA, Deng XW (2003) From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260: 289–297
  • Talbott LD, Zhu J, Han SW, Zeiger E (2002) Phytochrome and B light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol 43:639–646
  • Tanada T (1997) The photoreceptors in the high irradiance response of plants. Physiol Plant 101:451–454
  • Tepperman JM, Hudson ME, Khanna R, Zhu T, Chang SH, Wang X, Quail PH (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to redlight-regulated gene expression during seedling de-etiolation. Plant J 38:725–739
  • Tepperman JM, Hwang YS, Quail PH (2006) phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 48:728–742
  • Torres CA, Andrews PK, Davies NM (2006) Physiological and biochemical responses of fruit exocarp of tomato (Lycopersicon esculentum Mill.) mutants to natural photo-oxidative conditions. J Exp Bot 57:1933–1947
  • Van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995a) Far-red light-insensitive, phytochrome A-deficient mutants of tomato. Mol Gen Genet 246:133–141
  • Van Tuinen A, Kerckhoffs LHJ, Nagatani A, Kendrick RE, Koornneef M (1995b) A temporary red light-insensitive mutant of tomato lacks a light-stable, B-like phytochrome. Plant Physiol 108:939–957
  • Vandenbussche F, Habricot Y, Condiff AS, Maldiney R, Van der Straeten D, Ahmad M (2007) HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Plant J 49:428–441
  • Weller JL, Hecht V, Vander Schoor JK, Davidson SE, Ross JJ (2009) Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell 21:800–813
  • Zhai Q, Li CB, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, Li C (2007) Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol 48:1061–1071

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f35a1245-e2c6-4c04-829d-60f1dfbd8763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.