PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 14 | 2 |

Tytuł artykułu

Preliminary studies on the effect of Fe-nanosponge complex in horticulture

Treść / Zawartość

Warianty tytułu

PL
Wstępne badania dotyczące wpływu kompleksu nanogąbki Fe w ogrodnictwie

Języki publikacji

EN

Abstrakty

EN
Iron deficiency is a major nutritional disorder in crops. Inorganic Fe-compounds and synthetic Fe-chelates are commonly used to control chlorosis but their use arise environmental concerns. We recently developed a new iron fertilizer using a β-cyclodextrin-based nanosponge complex (Fe-NS). In this study, a pilot trial was performed on hydroponically cultivated horticultural plants in order to evaluate the effect of Fe-NS. Sweet corn and tomato were used as model plants analyzing chlorophyll, dry matter and Fe content. Fe-NS effect was compared to FeSO4 and Fe-DTPA. Fe-NS had a positive effect on re-greening and growth in sweet corn and tomato plants.
PL
Niedobór żelaza jest głównym zaburzeniem odżywczym roślin uprawnych. Nieorganiczne związki Fe oraz syntetyczne chelaty Fe są powszechnie używane do walki z chlorozą, co niepokoi jednak ekologów. Opracowano więc nowy nawóz żelazowy przy użyciu kompleksu nanogąbki w oparciu o β-cyklodekstrynę (Fe-NS). W niniejszym badaniu przeprowadzono test pilotażowy na roślinach ogrodniczych w celu oceny wpływu FeNS. Modelowymi roślinami były słodka kukurydza i pomidor, w których przeanalizowano zawartość chlorofilu, suchej masy oraz Fe. Wpływ Fe-SN porównano z FeSO4 i FeDTPA. Fe-NS miał pozytywny wpływ na nowe zazielenienie oraz wzrost roślin słodkiej kukurydzy i pomidora.

Wydawca

-

Rocznik

Tom

14

Numer

2

Opis fizyczny

p.51-58,fig.,ref.

Twórcy

autor
  • Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
autor
  • Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
  • Green Has Italia s.p.a.
autor
  • Green Has Italia s.p.a.
autor
  • Sea Marconi Technologies s.a.s.
autor
  • Sea Marconi Technologies s.a.s.
autor
  • Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
autor
  • Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy

Bibliografia

  • Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., López-Millán, A.F. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem., 49(5), 471–482.
  • Abadía, J., Álvarez-Fernández, A., Rombolà, A.D., Sanz, M., Tagliavini, M, Abadía, A. (2004). Technologies for the diagnosis and remediation of Fe deficiency. Soil Sci. Plant Nutr. 50, 965–971.
  • Bhattacharya, I., Bandyopadhyay, S., Varadachari, C., Ghosh, K. (2007). Development of a novel slow-releasing iron-manganese fertilizer compound. Ind. Eng. Chem., 46, 2870–2876.
  • Chandra, P.K., Ghosh, K., Varadachari, C. (2009). A new slow-releasing iron fertilizer. Chem. Eng. J., 155, 451–456.
  • Chohura, P., Komosa, A. (2003). Nutrition status of greenhouse tomato in nutrition status of greenhouse tomato grown in inert media. Part II. Microelements. Acta Sci. Pol. Hortorum Cultus, 2(2), 3–13.
  • El-Jendoubi, H., Melgar, J.C., Álvarez-Fernández, A., Sanz, M., Abadía, A., Abadía, J. (2011). Setting good practice to assess the efficiency of iron fertilizers. Plant Physiol. Biochem., 49 (5), 483–488.
  • Godsey, C.B., Schmidt, J.P., Schlegel, A.J., Taylor, R.K., Thompson, C.R., Gehl, R.J. (2003). Correcting Fe deficiency in corn seed row-applied Fe sulfate. Agron. J. 95, 160–166.
  • Hell, R., Stephan, U.W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta, 216, 541–555.
  • Hergert, G.W., Nordquist, P.T., Petersen, J.L., Skates, B.A. (1996). Fertilizer and crop management practices for improving maize yields on high pH soil. J. Plant Nutr., 19, 1223–1233.
  • López-Millán, A.F., Morales, F., Gogorcena, Y., Abadía, A., Abadía, J. (2009). Metabolic responses in iron deficient tomato plants. J. Plant Physiol., 166, 375–384.
  • Lucena, J.J. (2007). Syntethic Iron Chelates to correct iron deficiency in plants. In: Barton L.L., Abadía J. (eds). Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, The Netherland, pp. 103–128.
  • Ma, M., Li, D. (1999). New organic nanoporous polymers and their inclusion complexes. Chem. Mater., 11, 872–876.
  • Marschner, H, Römheld, V., Kissel, M. (1986). Different strategies in higher-plants in mobilization and uptake of iron. J. Plant Nutr., 9, 695–713.
  • Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press, Cambridge, U.K., 313–324.
  • Martínez-Cuenca, M.R., Forner-Giner, M.A., Domingo, J.I., Primo-Millo, E., Legaz, F. (2013). Strategy I responses to Fe-deficiency of two Citrus rootstocks differing in their tolerance to iron chlororis. Sci. Hortic., 153, 56–63.
  • Mathers, A.C. (1970). Effect of Ferrous sulfate and sulfuric acid on grain sorghum yields. Agron. J., 62, 555–556.
  • Nowack, B. (2002). Environmental chemistry of aminopolycarboxilate chelating agents. Environ. Sci. Technol., 36, 4009–4016.
  • Roggero, C.M., Dicarlo, S., Tumiatti, V., Tumiatti, M., Devecchi, M., Scariot, V., Kapila, S. (2013). WO 2013046165 A1. Use of functionalised nanosponges for the growth, conservation, protection and disinfection of vegetable organisms.
  • Rombolà, A.D., Toselli, M., Carpintero, J., Ammari, T., Quartieri, M., Torrent, J., Marangoni, B. (2003). Prevention of iron-deficiency induced chlorosis in kiwifruit (Actinidia deliciosa) through soil application of synthetic vivianite in a calcareous soil. J. Plant Nutr., 26, 2031–2041.
  • Rombolà, A. D., Tagliavini, M. (2007). Iron nutrition of fruit tree crops. In: Barton, L.L., Abadía, J. (eds). Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, The Netherland, 61–83.
  • Sánchez-Alcalá, I., Bellón, F., del Campillo, M.C., Barrón, V., Torrent, J. (2012). Application of synthetic siderite (FeCO3) to the soil is capable of alleviating iron chlorosis in olive trees. Shi. Hortic., 138, 17–23.
  • Sharma, S., Sanwal, G.G. (1992). Effect of Fe deficiency on the photosynthetic system of maize. J. Plant Physiol., 140(5), 527–530.
  • Seglie, L., Devecchi, M., Trotta, F., Chiavazza, P.M., Dolci, M. (2008). Effects of nanosponges including new anti-ethylene compounds on post harvest longevity of cut flowers and of nanosponges including phytohormones on in vitro regeneration of ornamental species. Proceeding Book of “The 14th International Cyclodextrins Symposium”, 8–11 May, Kyoto, Japan.
  • Seglie, L., Martina, K., Devecchi, M., Roggero, C., Trotta, F. Scariot, V. (2011). β-Cyclodextrinbased nanosponges as carriers for 1-MCP in extending the postharvest longevity of carnation cut flowers: an evaluation of different degrees of cross-linking. Plant Growth Regul., 65(3), 501–511.
  • Seglie, L., Devecchi, M., Trotta, F., Scariot, V. (2013). β-cyclodextrin-based nanosponges improve 1-MCP efficacy in extending the postharvest quality of cut flowers. Shi. Hortic., 159, 162–165.
  • Tomasi, N., Rizzardo, C., Monte, R., Gottardi, S., Jelali, N., Terzano, R., Vekemans, B., De Nobili, M., Varanini, Z., Pinton, R., Cesco, S. (2009). Micro-analitical, physiological and molecular aspects of Fe acquisition in leaves of fe-deficient tomato plants re-supplied with natural Fe complexes in nutrient solution. Plant Soil, 325, 25–38.
  • Trotta, F., Tumiatti, V. (2003). Cross-linked polymers based on cyclodextrin for removing polluting agents. WO 03/085002. Zuchi, S., Cesco, S., Varanini, Z., Pinton, R., Astolfi, S. (2009). Sulphur deprivation limits Fedeficiency responses in tomato plants. Planta, 230(1), 85–94.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-f2f6bc6a-e5d1-445e-89fd-ad386177f65e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.